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Abstract

Natural Language Generation (NLG) is the �eld of study which aims to en-

dow agents with the ability to generate language to satisfy any stated communica-

tive goal (CG). Today, NLG systems that converse (e.g., Meena) and co-author (e.g.,

Gmail SmartCompose) with humans aren’t just deployable, but an accepted part of

net-equipped societies. Notwithstanding the rapid strides in NLG research, several

aspects of model outputs that require further research scrutiny, inter alia, remain:

• Enhancing commonsense plausibility of generated outputs, that existing research

[110] has found to be de�cient.

• Ensuring discourse coherence, both in terms of local discourse structure [149]

and wider multi-sentence discourse structure [97].

• Controlling generated text to adhere to given constraints (e.g., lexical choice pref-

erences to control for lexical styles, or avoid swear words [1, 65]).

• Incorporating domain-speci�c pragmatic or commonsense knowledge for �ne-

tuning to low resource domains.

To analyze and address these shortcomings, one has to explore a task setting fo-

cussing on the aspect, and then formulate an approach to either improve the learn-

ing or the evaluation with respect to it. Since NLG is a complex, multipart oper-

ation, it can become challenging to disentangle and isolate out individual aspects.

We claim in this thesis that a productive approach is to follow the traditional de-

composition of NLG into a 3-stage pipeline, as we describe next, since it facilitates

separation of aspects by their principal contribution to the process.

Models underlying today’s systems e.g., T5 [173], based on neural architec-

tures like Transformers [227], are “end-to-end" in structure and learning. They

neither produce intermediate symbolic outputs, nor split into stages learnable in-

dependently. In contrast, NLG was traditionally seen as a composite sequence of

subtasks, with typical models being pipelines of stages. In 2000, Reiter & Dale pre-

sented a consensus stagewise architecture — macroplanning (discourse planning),

microplanning (sentence planning) and surface realization, which we call the Classi-
cal NLG pipeline, or CNP. This pipeline motivates our 3-stage decomposition, which

allows focus on a small set of aspects while holding others constant. Such focusing

is a powerful methodology for NLG research. Herein, we exemplify how it helps

us contribute to each aspect, via four contribution types:

1. New tasks isolating the aspect, denoted by [Task].

2. Improve existing evaluation process for the aspect, denoted by [Evaluation].

3. Use knowledge external to CG to learn models better for the aspect, denoted by

[Knowledge].

4. Improve Learning Model/Process. We denote this by [Method].

The culmination of this work is a set of algorithms, approaches, and evaluation

techniques that contribute to the aspect-wise evolution of NN-based NLG, leading

to richer and more appropriate NLG output.
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Chapter 1

Introduction

The old order changeth yielding place to

new;

And God ful�lls himself in many ways,

Lest one good custom should corrupt the

world.

Lord Alfred Tennyson

The old that is strong does not wither,

Deep roots are not reached by the frost.

JRR Tolkien

1.1 Natural Language Generation

1.1.1 Preliminaries & Guiding Principles

1. Grammar, Grammaticality & Fluency:

A grammar is a set of rules of the form Σ∗ → Σ∗, de�ned over an alphabet of symbols

Σ = NT ∪ T , where NT are the non-terminal symbols and T are the terminal symbols.

We call a piece of text grammatical or say that it possesses grammaticality if it can be gener-

ated by the grammar of English, or the language under question. Note, however, that it is an

almost impossible task to write a grammar for an entire existing, sui-generis language which

handles all sentences/phenomena seen in that language, though even the earliest grammari-

ans like Panini [192] have made attempts at this. As a result, when we say grammatical what
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we mean is that the piece of text would be considered acceptable by most native speakers

of the language when they are asked so, and is hence also sometimes called acceptability. A

related but slightly di�erent notion is that of �uency — a text is �uent is if it sounds like a

natural text you would hear from a native speaker of the language — such texts of course

would be largely grammatical , but it would also exclude grammatical sentences which are

meaningless i.e., they are so implausible that it is hard to assign them a meaning, even an

abstract or imaginative one e.g., Chomsky’s famous example Colorless green ideas sleep furi-

ously.

2. Finite State Automatons

An automaton is a �nite-memory (or one-step memory) accept-reject mechanism that can

take in a sequence of symbols from some symbolset Σ as input. Internally, the automaton

consists of a i) set of states ii) transition arcs between states which are traversed based on

the current input symbol read iii) start and end states ; note that these are from the existing

states and may themselves overlap

Symbol sequences which on being read by the automaton take it to one of its stop states are

said to be accepted by the automaton. Every automaton has a corresponding CFG associated

with it. These automatons are also known as Finite State Automatons (FSAs).

A generalization of FSA is that of pushdown automata, which are also provided with a stack

of potentially unbounded length.

Finite State Transducers (FSTs) are FSAs which can also emit output symbols during transi-

tions (or after reaching an input state, depending on how one may de�ne it)

In Chapter 2, we will see FSTs being employed by one of the baseline approaches.

3. Language Model:

A language model (LM) de�nes a probability distribution P (s) over all possible word (or

subword/character, depending on modelling choice and task etc.,) sequences s ∈ S, where

S is the Kleene closure of the vocabulary V .

Many LM architectures are factored in left-to-right fashion P (s) = Π
i=|s|
i=2 Pnext(wi|si−11 ),

where Pnext is the next-word distribution and si−1i is the subsequence of the �rst (i − 1)

elements of s. Note that there also exist other formulations, e.g., whole sentence language

models [193].

4. Transducer

A transducer is a model fθ() : V ∗in × X → V ∗out which can accept an input sequence

string sinp ∈ V ∗in from an input vocabulary Vin, where ∗ is the Kleene closure and θ are

the transducer’s parameters, along with other potential inputs/parts of the communicative
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goal (themselves symbolic or continuous) xin ∈ X , and output a sequence sout ∈ V ∗out. The

transduction function can be written as xout = fθ(sin, xin)

Any NLG model basically functions as a transducer at inference time/test-time (taking in

the communicative goal and returning the output sequence), though the internal represen-

tations, learning process and architecture can vary signi�cantly.

When X = φ and Vout and Vin ⊂ Vout, it becomes possible to use any left-to-right factored

language model architecture as a transducer. This is since one can now feed in sin as the �rst

few tokens of a segment or the “prompt" to the language model (this part is “teacher forced"

running of the model i.e., since the sequence is predetermined, the language model is only

fed the sequence under question ) and then predict out sout using the language model using

some decoding method (see §5 for more).

Transducer models which have two roughly separatable modules can be called Seq2Seq or

encoder-decoder models. The �rst module, or the encoder is for representing sin in some

symbolic or continuous intermediate form h (Note that h could even be a sequence or set of

things, e.g., a set of vectors). The second module uses h to then generate sout — this module

is known as the decoder. The term Seq2Seq is also often used in a wider sense for any neural

transducer and not just the particular form above. Seq2Seq models where the decoder uses

some internal form of attention mechanism [9] are also described as attentional.

5. Decoding

Decoding refers to the algorithm which �nally uses a learnt NLG model to produce the

output given an instance of the communicative goal (or “input" instance, if we assume the

rest of the communicative goal to remain �xed for the “task") .

6. In�lling

Intuitively, in�lling refers to the process of using a learnt model to perform “�ll in the blanks"

i.e., predicting a masked out (usually using a special character e.g., [MASK]) token given its

surrounding context. Depending on the model architecture and training, this might involve

the entire left and right contexts or subsets of them (e.g., only the left context for left-to-right

language models).

7. Systemic Functional Linguistics

Systemic Functional Linguistics (SFL) was a theory devised by the linguist M.A.K. Halliday

in the 1970s [70] SFL categorizes subgoals or subparts of the communicative goal into three

metafunctional categories:

(a) Ideational Goals: These subgoals pertain to the author’s state of mind; their knowl-

edge,memory and experience about the various states of the world (factual, physical
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etc.,), as well as the motivation and intent underlying the communicative goal (persua-

sion vs communication?)

(b) Interpersonal Goals: These subgoals pertain to the relationship between the speaker

and the listener/addressee. It also subsumes subgoals pertaining to the medium of trans-

mission, or the individual physical / emotional states of the addressee

(c) Textual Goals: These subgoals pertain to choices in terms of the order of presentation

of information in the text, the subset of textual surface forms employed, and the internal

structure and packaging of the text in terms of its constituent sentences, phrases, words

and other elements.

8. Rhetorical Goals

The non-textual subgoals of the wider communicative goal, namely those which can be

categorized under the Ideational and Interpersonal metafunctions are also sometimes referred

to as Rhetorical Goals.

9. Gricean Maxims

The four Gricean maxims of Quality, Quantity, Manner and Relation are four general guide-

lines relating the pragmatics of the speaker and their actual utterance; implicitly followed

by most human speakers (though sometimes violated intentionally, e.g., for humour) They

are sometimes together also referred to as The Cooperative Principle.

(a) Maxim of Quantity: Be as informative as is required; but not any more. The phe-

nomenon of implicature is often an outcome of this maxim.

(b) Maxim of Quality: Do not say what you don’t believe in; or what you believe in but

think the evidence is insu�cient.

(c) Maxim of Relation: Be as relevant as possible.

(d) Maxim of Manner: Be as clear, unambiguous, simple as you can while conveying the

information you intend to.

1.1.2 De�ning a NLG System

Communicative Goal (CG)

The overall goal which the output of the NLG system must satisfy in order for the process of

generation, and consequently the model, to be deemed successful. This also includes all the

information which the NLG model needs to modify, process and condition on while generating

its output.
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It is often common to characterize and address certain parts (or subgoals) of the CG as

controls, input and style(s) etc., though the choice of these parts is highly subjective in nature

— for example, for a movie review, the sentiment is considered part of the “input" when doing

formality transfer, but is considered a “control/style" when doing sentiment transfer.

Subtasks

The subtasks of natural language generation are a conceptual decomposition of the activities

to be performed to generate a text, given a CG. They may also be thought of as subgoals to be

accomplished before the overall CG has been achieved.

1. Content Selection:

Before generating the sentences and words, it is necessary to decide “What all to say?" out of

all the potential things which suitably �t the communicative goal. The set of these choices

is called content selection.

2. Content Ordering:

Having decided what to say, it is necessary to decide “In what order?" the selected pieces

of information from content selection would be presented in. The process of chooosing

this is content ordering. Collectively with content selection, the two are also referred to as

Macroplanning or Sentence Planning. This can be heavily dependent on the rhetorical goals

(roughly speaking, extra-textual goals; see §8 for a complete description) e.g., For a Twitter

thread, it might be required to place more retweetable and topically high-coverage content

earlier on.

3. Sentence Aggregation:

This subtask pertains to the breaking up and packaging of the content to present into sen-

tences, according to the broad order decided in Content Ordering.

4. Lexicalization:

This subtask refers to the choice of which word forms to broadly use in each sentence. Note

that some subdecisions maybe left unspeci�ed for the latter stages, especially Surface Real-

ization.

5. Referring Expression Generation:

Referring Expression Generation, a.k.a. Refex Generation is the choice of expressions, or

refexes to point to various entities, events or other item types while mentioning them at

each point in the generation. (this can include pieces of the generated output itself i.e.,

discourse segments e.g., as in “In our earlier argument, . . . ")
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6. Surface Realization:

Also referred to simply as Realization, this refers to the �nal, explicit generation of the output

text, resolving all the partially speci�ed elements from earlier stages, as well as �lling in

remaining gaps based on syntactic, co-occurrence based, prosodic and other considerations.

Though there is a natural ordering and sequence to the subtasks based on their typical

mutual dependency, and that is the order in which we shall present them, they need not always

be performed in that order, though the Classical NLG Pipeline which we shall describe in 1.1.2

makes a best attempt to do so. For instance, for many a CG, Referring Expression Generation

might be entirely independent of Lexicalization. For some others, it may be very closely tied to

syntax (e.g., in pro-drop languages like Spanish) (and hence would need to be revised) during

Surface Realization.

Classical NLG Pipeline (CNP) & Its Stages

1. Macroplanning:

This stage deals with the discourse level, i.e., the level where sentences are elements; also

sometimes called the macrostructure or the macro level. This stage handles the Content Se-

lection and Content Organization subtasks.

2. Microplanning:

This stage deals with the sentence level, i.e., the level where words/phrases are elements;

also sometimes called the microstructure or the micro level. This stage handles the Sentence

Aggregation, Lexicalization and Referring Expression Generation subtasks.

3. Surface Realization:

This stage handles the sole �nal subtask — i.e., the identically named Surface Realization.

4. What about Understanding?

An important detail omitted from most discussion or descriptions of the CNP is understand-

ing the input, whether it be for data-to-text or text-to-text generation tasks.

For simplicity of presentation, we will present and discuss issues pertaining to understanding

at a certain level at the corresponding generation level. For instance, issues related to under-

standing discourse markers and coreference chains would be discussed at the macroplanning

level.

5. Need for an Overarching Rhetorical Goals Layer

To satisfy the rhetorical (sub) goals within the wider CG, which are by de�nition not textual

in nature, the NLG model needs to potentially factor them in at each of the subtasks in
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the CNP . However, in its most basic form, the CNP only allows the CG as an input at its

topmost stage, i.e., Macroplanning, from whence it can only a�ect the bottom stages through

the content and order choices made at the topmost stage. This condition is naturally too

restrictive and limiting. It is for this reason that we introduce an overarching “Rhetorical

Goals Layer" (depicted as a vertically oriented cylinder in Figure 1.1) which provides access

to all rhetorical goals as well as any of their intermediate states as one traverses down the

CNLP.

We borrow the idea for such a layer from [78].

End-to-End Neural NLG Pseudo Pipeline

End-to-End Neural NLG Pseudo Pipeline or E2EN2PP refers to the canonical neural architec-

ture for NLG based on the Seq2Seq paradigm, where one or more encoders �rst encode the

CG, which is initially an input string but later embedded into continuous space through the

encoder embedding layers. Next, the encoder representations are aggregated or functionally

transformed in various ways. Finally, a decoder network uses any of the encoder representa-

tions to compute the probability/loss functions based additionally o� the gold output (at train-

ing time) or to generate the output text at test-time using some inference/search procedure or

sampling method.

Note that though the Seq2Seq paradigm in general, and our characterization of it here in par-

ticular, though general enough to include many paradigms of neural architectures do not cover

all of them exhaustively — particular exceptions being VAEs, GANs, Energy-Based Models etc.

We leave performing a similar study on these models with a generalization of our framework,

as we do in this thesis, as a point for future work.

Medium Constraints

These are constraints relating to the medium of transmission between the speaker and the lis-

tener, rather than their individual states or intents, or their pairwise relationship. Nonetheless,

as per the three-way SFL classi�cation, these would constraints would be classi�ed under inter-

personal goals, barring those which are explicitly tied to the text itself (e.g., using a maximum

of 280 characters), in which case they would (also) be classi�ed as textual goals
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Controls

A control is a variable or a property de�ned over any text, which is speci�ed as a part of the

CG to hold necessarily a particular range or subset of values for the target text. The set of all

controls speci�ed in the CG are sometimes simply referred to as controls. This could include

for example, properties like the number of sentences, token length, or even continuous values

such as entropy of the word distribution. This can also encompass properties de�ned by way

of functions or models, such as estimators of text simplicity, or perplexity according to some

pretrained language model.

Listener

Also referred to variously as the Addressee or the Target or the Audience, this refers to the

individual or group of people who will �nally read or listen to the generated text.

Control and Transfer tasks

Controllable generation tasks [156, 164] are generation tasks with a 2-part CG.

1. A content-based or textual goal, often simply called the input or ‘content. For instance, con-

trollable infobox-to-biography generation, this would simply be the Wikipedia Infobox. For

each unique test-time example, the input remains �xed.

2. Ensemble of one or more content-orthogonal/non-content goals (interpersonal and ideational

goals, if one follows the Systemic Functional Linguistics terminology). These goals are

also sometimes referred to as styles. Example control variables for controllable infobox-

to-biography generation could be audience literacy, biography length etc. The control goals

can each take on two or more discrete values, and can be dynamically varied by the user at

test-time.

Transfer tasks are controllable generation tasks where the input is a fully-realized text with an

initial or default con�guration of control variables. They are sometimes also referred to as style

transfer tasks.

Concept-To-Text-Generation Tasks

These are tasks where the CG requires generating a pertinent output of one or a few sentences,

given a largely unstructured or semi-structured collection of “concepts" as an input. We will

also refer to the input in such tasks as concept set or input concept set Commongen [110] (where
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the task is to generate a single sentence describing a situation involving all the given concepts)

and WebNLG [64] (where the task is to describe a sequence of SVO triples) are two prominent

examples of this family of tasks.

1.1.3 Background and Recent History

Natural Language Generation (NLG) is the �eld of inquiry which aims to endow agents with the

ability to generate natural language to satisfy any stated communicative goal given correspond-

ing input information. NLG is a sub�eld of Natural Language Processing (NLP), and is often seen

as a dual to Natural Language Understanding (NLU). From the inception days of AI, NLG capa-

bility became a part of its holy grail, with the ability to converse with human-indistinguishable

replies being the crux of Turing’s Imitation Game.
1
. Speci�cally, the imitation game stated that

for an AI agent to be deemed su�ciently intelligent, it must be able to converse with a secluded

human judge with enough pro�ciency such that the judge cannot tell apart either of the agent

and another control human conversee as being distinctively more human.

Through the decades, NLG research largely followed the waves of broader AI research,

though, being dependent on the underlying perceptual and understanding components from

vision, NLU and other sub�elds, it was often the last to which these seeped through. For in-

stance, during the �rst wave of statistical ML methods of the 90s and 2000s, one of the earliest

NLG works to introduce a learning-based component was in the surface realization part of the

Nitrogen system [102], which was as late as 1995. Application of these methods to higher gran-

ularity subtasks of NLG like content selection started in the post-2000s [43]. This was also the

case with the latest wave of “deep", neural machine learning methods, which began with the

commanding performance improvements of deep convolutional neural networks in the Ima-

geNet LSVRC-2010 Challenge. These methods �rst brought about dramatic improvements in

vision , then closely followed by speech recognition (through novel loss functions like the CTC

loss) [68], natural language understanding (through a revival of the already proposed continu-

ous distributional representations or word embeddings) [35] and machine translation (through

improvements to the already-known Elman RNN and the sequence-to-sequence framework)

[9].

The Seq2Seq framework from neural machine translation [224] found widespread adoption

and adaptation for NLG tasks [91, 134, 145, 206], leading to considerable gains on existing met-

1
Famed, and much mischaracterized, in posterity as The Turing Test
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rics such as ROUGE
2
. Inspite of these improvements, there remained gaps between human and

model performance on most NLP benchmarks, and designing adequate architectures required

signi�cant engineering e�ort and task knowledge to incorporate task-speci�c inductive biases.

With improvements brought about in this fashion saturating — people spoke of NLP not yet

having its “Imagenet Moment"
3
.

This aforementioned hurdle, of the absence of a generally good, underlying represention,

was �nally crossed on the back of two developments i) Introduction of transformers [227],

which could handle longer contexts and also trained faster by an order of complexity, open-

ing doors to training on much larger corpora ii) The concept of pretrain-and-then-�netune

(PTFM), where a large model is �rst pretrained on terabyte-scale corpora, typically using self-

supervision based objectives such as masked likelihood and then lightly �netuned with few

additional layers for each speci�c task. ElMo [158] and BERT [39] were early successes of

this paradigm, matching human performance on NLU benchmarks like GLUE [232]. This suc-

cess �nally made its way to NLG with OpenAI’s GPT [169] and GPT-2 [170], both of which

were autoregressive language models. The latter garnered widespread attention for reaching

hitherto unseen �uency at completing and extrapolating from arbitrary “prompts" of short to

medium length, besides being �netuneable for speci�c tasks like story generation [207] and di-

alog [22]. Finally, this paradigm was also extended to sequence-to-sequence architectures, such

as in BART [104] or T5 [173], which exhibited even stronger performance on NLG tasks due

to stronger conditioning on, and better representation of input information. A good fraction of

successive work to these milestone methods has been based on what [116] dub objective engi-

neering, namely, devising better objectives either for pretraining [118, 252] or for task-speci�c

�netuning [237].

Traditionally, before the 2010s, NLG was traditionally seen as a composite sequence of sub-

tasks, with typical models being pipelines of stages. [180, 183, 184]
4
. For instance, McKeown’s

TEXT architecture [130] for multi-sentence text generation, proposed in 1985, had

1. A “strategic component" stage to decide discourse-level structure and inter-sentence or-

ganization

2. A “tactical component" stage with a dictionary and grammar to realize individual sen-

tences and words given a plan from the former

2
ROUGE-2 scores on most datasets doubled from 7-10 range for non-neural baselines to 15-20 in [206]

3
A reference to the pervasive practice in modern computer vision of having the same underlying base layers

trained from ImageNet image classi�cation, with task speci�c layers starting from this representation

4
Note, though, that there were dissenters such as Appelt’s KAMP [6] who opposed this view from the outset.
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This division into subtasks had its roots in multiple, but chie�y two considerations. The

�rst was how the �eld of linguistics was historically subcategorized hierarchically into phonet-

ics, morphology, semantics, discourse etc. The second, more engineering one was the relative

ease o�ered by such a modular division to hand-designing both grammars/rules and the dis-

crete representation/structures they manipulated, such as trees [84], frames [54], scripts [203]

and schema [130], which were then the dominant paradigm underlining most AI systems for

language.

By the mid-90s, a near convergence had been reached on what the stages of a NLG pipeline

would be, with Reiter [180] discussing the psycholinguistic plausibility of a “consensus" 5-stage

architecture:- content determination→ sentence planning → surface generation→ morphology

→ formatting. In 1997 [183], they reworked this to a 6-stage one:- content determination →
discourse planning → sentence aggregation → lexicalization → referring expression generation

→ surface realization. Finally, writing in 2000, the same authors [184] presented a more concise

3-stage architecture, with “macroplanning" encompassing content determination and discourse

planning, and “microplanning" encompassing sentence aggregation, lexicalization, referring ex-

pression generation. Speci�cally, their pipelined architecture was: macroplanning→microplan-

ning → surface realization. We henceforth refer to this as the Classical NLG pipeline, or more

tersely, CNP (see §1.1.2 for a longer explanation).

11



March 25,2022

Figure 1.1: An illustration of how the Classical NLG Pipeline or CNP would work in action for

an actual generation task and input example. Here, the task is to summarize the given input

news article to within 280 characters. In addition to the classical components, we also include an

overarching “Rhetorical Goals" layer, shown as a cylinder, which is seen in certain architectures

such as that of [78]. The necessity of having such a layer for any reasonably realistic system is

explained in §8. Having such a layer becomes a necessity for most real-world NLG tasks, since

not all aspects of the communicative goal speci�cations deal with content (Recall the textual,

ideational and interpersonal meta-function categorization from Halliday’s Systemic Functional

Theory [72], which we also discuss in §7)

12
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Figure 1.2: An illustration of how End-to-End Neural NLG Pseudo-Pipeline or E2EN2PP would

work in action for an actual generation task and input example. Here, the task is to summarize

the given input news article to within 280 characters. Note that this is a Pseudo-Pipeline, since

the layers do not correspond to subtasks of NLG; moreover, they cannot be learnt or updated

independently.
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Figure 1.3: An illustration of how the End-to-End Neural NLG Pseudo-Pipeline or E2EN2PP

�eshed out in Figure 1.2 would work in action for an actual generation task and input ex-

ample, after incorporating the Intervention in Chapter 2. Here, the task is to summarize the

given input news article to within 280 characters. The forward E2EN2PP here merely acts as a

candidate generator, with the three new introduced components — Prior Estimator, Backward

Model and Reranker producing the �nal output distribution used to generate the Final Output

(by reranking candidates)
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Figure 1.4: An illustration of how the E2EN2PP �eshed out in Figure 1.2 would work in action for

the actual generation task and input example, after incorporating the Intervention in Chapter

8. Here, the task is to summarize the given input news article to within 280 characters. The

pragmatic knowledge store here has additional knowledge about what would be apt referring

expression preferences which the Pragmatic Interpretation Layer which it then uses to mark out

redundant referring expressions which ought to be modi�ed.
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Figure 1.5: An illustration of how the E2EN2PP �eshed out in Figure 1.2 would work in action for

the actual generation task and input example, after incorporating the Intervention in Chapter

6. Here, the task is to summarize the given input news article to within 280 characters. The text

marked out in carrot-red in the Final Output , i.e., dedocked is clearly picked up by the model

from the caption-expanded portion of the input (also marked in carrot-red)

1.2 Contributions & Structure

1.2.1 Contribution Types

Each contribution we make in this thesis addresses a particular aspect of NLG output, such as,

for e.g., commonsense plausibility, content ordering, etc. Each such contribution falls under

one or more of the contribution types below.

1. New tasks isolating the aspect, denoted by [Task].

2. Improve existing evaluation process for the aspect, denoted by [Evaluation].

3. Use knowledge external to CG to learn models better for the aspect, denoted by [Knowledge].

4. Improve Learning Model/Process. We denote this by [Method].
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1.2.2 Thesis Contributions & Outline

The rest of this thesis is split into three parts — Part I (Surface Realization), Part II (Microplan-

ning) and Part III (Macroplanning). The parts are further subdivided into chapters, each of

which makes a focussed contribution touching one or more of the contribution types in §1.2.1.

Furthermore, each chapter contains a “Broader Takeaways" subsection within its Conclusion

to further contextualize and assimilate the concluded chapter within the evolving narrative of

the thesis.

Part I: Surface Realization

This part of our thesis contains three chapters.

• Chapter 2: Lexico-Phonetic Surface Realization and Portmanteaus

• Chapter 3: Stylistic Surface Transduction To Shakespearize Modern English

• Chapter 4: Tongue Twister Generation (Proposed)

First, inChapter 2, we address the aspect of creativity in generation through exploring a cre-

ative NLG task at the lexico-phonetic level, namely, the task of creating a suitably interesting as

well as lexically and phonetically appropriate blend, a.k.a. portmanteau given two root words.

We devise character-level neural sequence-to-sequence (S2S) methods for the task of portman-

teau generation that are end-to-end-trainable, language independent, and do not explicitly use

additional phonetic information.

A common property of many creative generation tasks is paucity of training data, aris-

ing from the low number of widely known creative artifacts produced for a particular task.

Overcoming this paucity requires modifying the typical E2EN2PP pipeline by incorporating

additional constraints drawn from underlying theory and properties that de�ne the creative

phenomenon. To enforce the property that portmanteaus should sound “word-like", we de-

vise a noisy-channel-style model that allows incorporation of unsupervised word lists into the

learning process, improving performance over a standard source-to-target model that directly

learns a distribution of the form P(y|x) without refactoring it in Bayesian terms. Speci�cally,

the intervention to the E2E NLG pipeline required here, is �eshed out in Figure 1.3. Overall, this

chapter represents a contribution of type [Method]. This work on its completion was accepted

for publication as a short paper at EMNLP 2017. The respective publication is [59].

Next, in Chapter 3, we address the aspect of controlling diachronic register, which is ex-

pressed primarily through lexico-phrasal means. Speci�cally, we explore the task of transferring
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the style of a given sentence authored in contemporary English, such as e.g. I am in a rush, to the

style of William Shakespeare, who wrote in the Early Modern English prevalent in Elizabethan

times, such as e.g., I stand on sudden haste. The three methodical enhancements we propose,

each motivated from a property of style transfer at the lexical and phrase level, lead to three

major changes in the typical E2EN2PP pipeline. The �rst leverages the property of a shared

language between source and target sides. The second exploits the property of considerable

content invariance, speci�cally in terms of lexical choice, arising from meaning preservation.

The third devises a mechanism to retrospectively adjust lexical representations to incorporate

pairwise lexical source word→ target word correspondences from additional knowledge avail-

able from a dictionary-like source. Besides exploiting the task properties, these inductive bi-

ases also serve the role of making the learning process less dependent on parallel training data,

which is typically lesser for style transfer tasks compared to other typical transduction tasks,

e.g., Machine Translation.

This chapter represents a contribution along both the [Method] and [Knowledge] types.

This work on its completion was accepted as a long paper at the EMNLP 2017 Workshop on

Stylistic Variation. The respective publication is [81].

Finally, concluding Part I, in Chapter 4 we propose further exploring the aspect of creativ-

ity in generation which we already broached in Chapter 2, but this time through the prism of a

more challenging setting that requires adhering to subgoals spanning two task granularities at

once. Speci�cally, we propose the task of tongue twister generation. Tongue twisters are sen-

tences that are �uent besides being di�cult to pronounce e.g., "She sells seashells on the seashore.”.

Generating a tongue twister requires:

1. Maintaining di�culty of pronunciation, which is a token and phrase-level subgoal related

to the lexico-phonetic level of surface realization.

2. Maintaining �uency, that is a subgoal at the phrase and sentence levels of surface real-

ization.

We foresee a challenge arising in this task not just from having to satisfy two subgoals simul-

taneously, but additionally from them being expressible only through two distinct represen-

tational primitives of phoneme sequences and lexeme (word/wordpiece) sequences simultane-

ously.

This chapter aims to represent a contribution along the [New Task] types.
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Part II: Microplanning

This part is comprised of three chapters

• Chapter 5: Improving Realization Level Metric Evaluation of Open Dialog via

Microplanning Rollouts for Reference Augmentation

• Chapter 6: VisCTG: Improving Plausibility of Microplanning for Concept-To-

Text Generation Through Retrieve-Caption-Generate

• Chapter 7: Better Microplans For Concept-to-Text Tasks By Self Introspecting

Input Expansion (Proposed)

First, in Chapter 5 we address the aspect of microplanning-sensitive evaluation, particularly

in the context of evaluating NLG outputs against references using automatic evaluation met-

rics such as BLEU that, by de�nition, perform matching only at the level of surface realization.

These metrics are essential for NLG model development since constant, per-con�guration hu-

man evaluation is infeasible. However, their restriction to surface-level matching is problematic

for tasks like dialog, where there are many adequate output responses for a given input dia-

log context, since it necessitates collection of multiple references to cover the range of output

responses. This is expensive, time-consuming and not scalable. We devise a novel suite of tech-

niques for automatically expanding a reference set to a larger set of pseudo-references, sans

any added annotation. Our formulation treats the dialog context as a microplan-in-progress

and projects out multiple pseudo-responses from it, with the help of both commonsense and

retrieved instance-based knowledge.

This chapter makes a contribution along both the [Evaluation] and [Knowledge] types. A

work based on this chapter was accepted as a long paper at Findings of ACL 2021 [62].

Next, in Chapter 6 we address the aspect of commonsense plausibility of NLG outputs and

how to improve the same. We explore this aspect through the lens of devising a model agnostic

enhancement to SOTA pretrained generator models to bolster their microplanning, and conse-

quently, their output plausibility, while doing concept-to-text generation tasks (see §1.1.2) such

as Commongen [110], where the communicative goal is to generate a sentence constructing a

plausible situation from a given set of input concepts.

We �rst identify several critical issues in baseline model generated outputs for this task,

like poor plausibility, inadequate lexical relationships, and incomplete arguments etc. We posit

that properties speci�c to the textual modality, such as the Gricean maxim of Quantity and the

Zip�an nature of concept occurrence, could indeed have a marked negative downstream e�ect

on the NLG model’s learning for CommonGen. We devise an enhancement that augments the
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input concepts by drawing information from the visual modality to help dampen this negative

e�ect. Comprehensive evaluation and analysis demonstrate that this enhancement noticeably

improves base model performance while successfully addressing the issues earlier noticed in

the baseline output.

Speci�cally, the intervention we devise to the E2EN2PP is the addition of an Input Expansion

Layer between the Input and the Embedding Layer. Before passing the input string to the

Embedding Layer, the Input Expansion Layer symbolically augments it with the captions of

retrieved relevant images. Figure 1.5 illustrates our intervention.

This chapter makes a contribution along both the [Method] and [Knowledge] types. A work

based on this chapter was accepted as a long paper at AAAI 2022 [53].

Finally, through Chapter 7, we continue to address the aspect of commonsense plausibil-

ity. Speci�cally, we continue in the Commongen task setting just like Chapter 6. We aim to

enhance the method to improve the commonsense plausibility of generated outputs, albeit us-

ing a proposed approach which, unlike Chapter 6 does not require information from another

modality.

Our approach is based on the observation that large, pretrained generator models, by virtue

of having been trained to predict masked out words given their contexts on large corpora such

as BookCorpus, also tend to acquire a measure of factual and commonsense knowledge. We

aim to devise an overarching model architecture based on breaking the aggregate process of

generation into two passes through the base model , each of which can distinctly leverage one

of the two abilities of these NLG models, in order, i.e., i) as a concept augmentation/expansion

mechanism ii) as a text sequence to text sequence transducer. Such a formulation makes in-

creased sense in particular for concept-to-text generation tasks, especially CommonGen, since

the communicative goal is to construct a sentence describing a su�ciently complete, common-

sense plausible situation involving all the given input concepts.

This chapter aims to represent a contribution along the [Method] types.

Part III: Macroplanning

This part is comprised of two chapters, addressing the content selection and content ordering

subtasks respectively.

• Chapter 8: Viable Content Selection and Refex Generation Through Pragmatic

Backo� For Chess Commentary Generation

• Chapter 9: Macro-Level Controllable Generation based on Elements of Narrativ-
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ity: The Narrative Reordering Problem

First, in Chapter 8, we address the aspect of content selection and referring expression gen-

eration, particularly in settings which requires an understanding of domain pragmatics. Specif-

ically, we present the novel NLG task of generating short, interesting natural language com-

mentary for each chess game move during gameplay. We show how S2S models simply based

on a E2EN2PP su�er from the common response problem [41] and fail to produce commentary

that is even at the level of a template based baseline. We posit that this arises from the inability

to acquire tabula rasa the pragmatic knowledge necessary to understand the input game state.

We devise an alternative model that includes an additional Pragmatic Interpretation Layer to

discretely featurize the board states using a game library, essentially backing o� to pragmatic

game knowledge to viably declutter the input states, thereby simplifying the understanding and

overcoming the microplanning and macroplanning issues observed. The devised intervention

in the E2EN2PP that needs to be done can be seen in Figure 1.4.

This chapter makes a contribution along the [Knowledge] and [New Task] types. A work

based on this chapter was accepted as a long paper at ACL 2018 [82].

Second, in Chapter 9, we address the macroplanning related aspects of maintaining multi-

sentence coherence and preserving underlying plot, particularly in the context of a change in the

con�guration of content order. In this chapter, we de�ne and investigate the task of Narrative

Reordering (NAREOR) where the communicative goal involves rewriting a given story in a dif-

ferent narrative order while preserving its plot. A NLG system that can rewrite the story in a

di�erent narrative order such that it retains its coherence will also ensure adequate interpreta-

tion and understanding by the reader. We present a dataset, NAREORC, with human rewritings

of stories within ROCStories in non-linear orders. Simply reordering sentences is far from suf-

�cient, as rewritten text must be adjusted to handle coreference, tense, time expressions inter

alia.

This chapter makes a contribution along both the [Evaluation] and [New Task] types. A

paper based on this chapter was accepted as a long paper at AAAI 2022 [61].
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1.3 Projected Timeline

Feb. 2022 Thesis Proposal

Mar. 2022 — Apr. 2022 Finish the work in progress in chapter 7

Apr. 2022 — May. 2022 Finish the proposed work in chapter 4

May. 2022 — Jun. 2022 Job Search

July. 2022 Thesis Defense
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Part I

Realization
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Chapter 2

Lexico-Phonetic Surface Realization and

Portmanteaus

(EMNLP 2017)

[Method]

For instance, take the two words

"fuming" and "furious". Make up your

mind that you will say both words, but

leave it unsettled which you will say �rst

. . . if you have the rarest of gifts, a

perfectly balanced mind, you will say

"frumious".

Lewis Carroll, Hunting Of The Snark

A central feature of NLG is its creative aspect. Unlike NLU tasks such as dependency parsing

[101], the output of a NLG system is far less circumscribed by its input. Whereas a dependency

parser performs a transformation which results in information loss, generators have to perform

transformations which require considerable addition of information beyond that provided in the

input. For example, dependency parsing only has to �esh out the syntactic pairwise relation

information, in contrast to a generator which has to produce an output text with information

on multiple aspects — syntax, semantics, pragmatics, inter alia. Often, a generator has to make

assumptions or develop its own set of arbitrary preferences with regard to some of these choice
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points, since they are unstated in the input. In that sense, NLG is a creative process. Note that

this does not mean that the subspace of acceptable outcomes (NLG outputs) is unde�ned or

unconstrained, but that this can nevertheless be quite large with little further discrimination

possible based on the input information alone. Good generators can innovatively and creatively

employ the lexical, syntactic and other means at their disposal in creative ways to express the

nuances of what is being communicated as per the communicative goal. This creativity starts

at even the lowest granularity, lexical level, with this level providing an ideal platform to begin

exploring issues concerning the same. In this chapter, we shall explore the dynamic generation

of a class of lexical artifacts named portmanteaus.

Portmanteaus are a creative word formation phenomenon where two words blend to form

a new word, with a meaning derived from but distinct to their original meanings e.g wiki +

etiquette → wikiquette, fashion + fascism→ fashism . Portmanteaus are a form of neologism.

Portmanteau generation [38] can �nd potential use as a lower-level submodule in creative gen-

eration tasks. We devise character-level neural sequence-to-sequence (S2S) methods for the

task of portmanteau generation that are end-to-end-trainable, language independent, and do

not explicitly use additional phonetic information.

In this chapter, we focus on the contribution type of [Method]. We do not specify the actual

overarching communicative intent of the system (Why it should create the portmanteau word -

which would in a real world NLG application be a submodule occasionally invoked), but assume

that its given. Instead we focus on How it can do so.

We devise a noisy-channel-style model that allows for the incorporation of unsupervised

word lists, improving performance over a standard source-to-target model that directly learns

a distribution of the form P(y|x) without refactoring it in Bayesian terms. This model is made

possible by an exhaustive candidate generation strategy speci�cally enabled by the features

of the portmanteau task. Besides the forward factored model, our experiments also �nd our

approach to be superior to a state-of-the-art FST-based baseline with respect to ground truth

accuracy and human evaluation.

Speci�cally, the intervention to the E2E NLG pipeline required here is �eshed out in Figure

2.1. Importantly, our work also highlights the need for special sensitivity and carefully designed

approaches towards long-tailed phenomena [11, 144], where otherwise neglected aspects (here

phonetics) and paucity of data to learn from become important considerations. These phenom-

ena typically manifest themselves at the realization level. It is critical to handle them adequately

in order to maintain good worst case performance, which is an important consideration for

making NLG systems deployable.
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Figure 2.1: An illustration of how the End-to-End Neural NLG Pseudo-Pipeline or E2EN2PP

�eshed out in Figure 1.2 would work in action for our actual generation task and input ex-

ample, after incorporating the Intervention described in this Chapter. The forward E2EN2PP

here merely acts as a candidate generator, with the three new introduced components — Prior

Estimator, Backward Model and Reranker producing the �nal output distribution used to gen-

erate the Final Output (by reranking candidates)

2.1 Introduction

Portmanteaus (or lexical blends [3]) are novel words formed from parts of multiple root words

in order to refer to a new concept that can’t otherwise be expressed concisely. Portmanteaus

have become frequent in modern-day social media, news reports and advertising, one popular

example being Brexit (Britain + Exit). [159]. These are found not only in English but many

other languages such as Bahasa Indonesia [36], Modern Hebrew [14, 15] and Spanish [161].

Their short length makes them ideal for headlines and brandnames. [57].

Some languages such as Japanese also have portmanteau-like structures, albeit with fairly

regular rules of formation, taking away the need for a machine learning based approach. How-

ever, for English, unlike better-de�ned morphological phenomena such as in�ection and deriva-

tion, portmanteau generation is not a typical regular phenomena with a well-agreed upon set
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Figure 2.2: A sketch of our Backward, noisy-channel model. The attentional S2S model with

bidirectional encoder gives P (x|y) and next-character model gives P (y), where y (spime) is the

portmanteau and x = concat(x(1), “;”,x(2)) are the concatenated root words (space and time).

of rules
1
. For instance, [212] state that the composition of the portmanteau from its root words

depends on several factors, two important ones being maintaining prosody and retaining char-

acter segments from the root words, especially the head. An existing work by [38] aims to solve

the problem of predicting portmanteaus using a multi-tape FST model, which is data-driven, un-

like prior approaches. Their methods rely on a grapheme to phoneme converter, which takes

into account the phonetic features of the language, but may not be available or accurate for

non-dictionary words, or low resource languages.

Prior works, such as [49], have demonstrated the e�cacy of neural approaches for mor-

phological tasks such as in�ection. We hypothesize that such neural methods can (1) provide

a simpler and more integrated end-to-end framework than multiple FSTs used in the previ-

ous work, and (2) automatically capture features such as phonetic similarity through the use

of character embeddings, removing the need for explicit grapheme-to-phoneme prediction. To

test these hypotheses, in this chapter, we devise a neural S2S model to predict portmanteaus

given the two root words, speci�cally making 3 major contributions:

• We devise an S2S model that attends to the two input words to generate portmanteaus,

and an additional improvement that leverages noisy-channel-style modelling to incorpo-

rate a language model over the vocabulary of words (§9.3.1).

• Instead of using the model to directly predict output character-by-character, we use the

features of portmanteaus to exhaustively generate candidates, making scoring using the

noisy channel model possible (§2.4).

• We curate and share a new and larger dataset of 1624 portmanteaus (§9.2).

1
This does not imply that one cannot come up with a set of rules by observing a su�cient number of port-

manteau examples - but one is more likely to see a larger number of violations of these rules for newer examples

than one would if portmanteaus were a regular phenomenon in the English language e.g pluralization.
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In Experiments (§9.4), our model performs better than the baseline [38] on both objective and

subjective measures, demonstrating that such methods can be used e�ectively in a morpholog-

ical task.

2.2 Related Work

Özbal and Strapparava [148] generate new words to describe a product given its category and

properties. However, their method is limited to hand-crafted rules as compared to our data

driven approach. Also, their focus is on brand names. Hiranandani et al. have devised an

approach to recommend brand names based on brand/product description. However, they con-

sider only a limited number of features like memorability and readability. Smith et al. [217] de-

vise an approach to generate portmanteaus, which requires user-de�ned weights for attributes

like sounding good. Generating a portmanteau from two root words can be viewed as a S2S

problem. Recently, neural approaches have been used for S2S problems [224] such as MT. Ling

et al. [115] and Chung et al. [31] have shown that character-level neural sequence models work

as well as word-level ones for language modelling and MT. Zoph and Knight [258] devise S2S

models for multi-source MT, which have multi-sequence inputs, similar to our case.

2.3 Models

This section describes our neural models.

2.3.1 Forward Architecture

Under our �rst devised architecture, the input sequence x = concat(x(1), “;”,x(2)), while the

output sequence is the portmanteau y. The model learns the distribution P (y|x).

The network architecture we use is an attentional S2S model [9]. We use a bidirectional

encoder, which is known to work well for S2S problems with similar token order, which is

true in our case. Let

−−−−→
LSTM and

←−−−−
LSTM represent the forward and reverse encoder; eenc() and

edec() represent the character embedding functions used by encoder and decoder The following
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equations describe the model:

h
−→enc
0 =

−→
0 , h

←−enc
|x| =

−→
0

h
−→enc
t =

−−−−→
LSTM(henct−1, eenc(xt))

h
←−enc
t =

←−−−−
LSTM(henct+1, eenc(xt))

henct = h
−→enc
t + h

←−enc
t

hdec0 = henc|x|

hdect = LSTM(hdect−1, [concat(edec(yt−1), ct−1)])

pt = softmax(Whs[concat(hdect , ct)] + bs)

The context vector ct is computed using dot-product attention over encoder states. We choose

dot-product attention because it doesn’t add extra parameters, which is important in a low-data

scenario such as portmanteau generation.

ati = dot(hdect , henci ), αt = softmax(at)

ct =

i=|x|∑
i=1

αtih
enc
i

In addition to capturing the fact that portmanteaus of two English words typically sound

English-like, and to compensate for the fact that available portmanteau data will be small, we

pretrain the character embeddings on English language words. We use character embeddings

learnt using an LSTM language model over words in an English dictionary,
2

where each word

is a sequence of characters, and the model will predict next character in sequence conditioned

on previous characters in the sequence.

2.3.2 Backward Architecture

The second devised model uses Bayes’s rule to reverse the probabilities P (y|x) = P (x|y)P (y)
P (x)

to get argmaxy P (y|x) = argmaxy P (x|y)P (y). Thus, we have a reverse model of the proba-

bility P (x|y) that the given root words were generated from the portmanteau and a character

language model model P (y). This is a probability distribution over all character sequences

2
Speci�cally in our experiments, 134K words from the CMU Pronouncing dictionary [236].

30



March 25,2022

y ∈ A∗, where A is the alphabet of the language. This way of factorizing the probability is also

known as a noisy channel model, which has recently also been shown to be e�ective for neural

MT ([75], [248]). Such a model o�ers two advantages

1. The reverse direction model (or alignment model) gives higher probability to those port-

manteaus from which one can discern the root words easily, which is one feature of good

portmanteaus.

2. The character language model P (y) can be trained on a large vocabulary of words in the

language. The likelihood of a word y is factorized as P (y) = Π
i=|y|
i=1 P (yi|yi−11 ), where

yij = yi, yi+1 . . . yj , and we train a LSTM to maximize this likelihood.

2.4 Making Predictions

Given these models, we must make predictions, which we do by two methods

Greedy Decoding: In most neural sequence-to-sequence models, we perform auto-regressive

greedy decoding, selecting the next character greedily based on the probability distribu-

tion for the next character at current time step. We refer to this decoding strategy as

Greedy.

Exhaustive Generation: Many portmanteaus were observed to be concatenation of a pre�x

of the �rst word and a su�x of the second. We therefore generate all candidate outputs

which follow this rule. Thereafter we score these candidates with the decoder and output

the one with the maximum score. We refer to this decoding strategy as Score.

Given that our training data is small in size, we expect ensembling [20] to help reduce

model variance and improve performance. In this chapter, we ensemble our models wherever

mentioned by training multiple models on 80% subsamples of the training data, and averaging

log probability scores across the ensemble at test-time.

2.5 Dataset

The existing dataset by [38] contains 401 portmanteau examples from Wikipedia. We refer to

this dataset as DWiki. Besides being small for detailed evaluation, DWiki is biased by being from

just one source. We manually collect DLarge, a dataset of 1624 distinct English portmanteaus

from following sources:
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• Urban Dictionary
3

• Wikipedia

• Wiktionary

• BCU’s Neologism Lists from ’94 to ’12.

Naturally, DWiki ⊂ DLarge. We de�ne DBlind = DLarge − DWiki as the dataset of 1223 exam-

ples not from Wikipedia. We observed that 84.7% of the words in DLarge can be generated by

concatenating pre�x of �rst word with a su�x of the second.

2.6 Baseline

In this section, we shall concisely discuss the FST-based approach for our task, devised by [38].

We refer the reader to the original paper for a more detailed exposition.

The baseline approach from [38], illustrated in Figure 2.3, de�nes a pipeline of FSTs to

progressively transform the root words x(1)
and x(2)

to the output y. It also requires the root

words to have corresponding phoneme sequences based on the CMU Pronouncing Dictionary.

The approach proceeds through the following steps.

1. Get the phoneme sequences of root words x(1)
and x(2)

from CMU Pronouncing Dictionary

2. FST A pretransforms the individual phoneme sequences before they are merged.

3. FST B, which has two input tapes (one for each root word) generates a merged phoneme

sequence on its “output tape", denoted by PMpron.

4. FST C reads o� this phoneme sequence and reconverts it to the space of graphemes/letters,

with the output grapheme sequence being denoted PM ′
.

5. Finally, FST D and FST E1,2 each do a round of successive "post-processing" of sorts, con-

verting. PM ′ → PM ′′
and PM ′ → PM ′′

respectively. FSTE1,2 has three input tapes, since

it also reads in the two root words as inputs in addition to the current portmanteau sequence

PM ′′
.

6. The �nal, output portmanteau produced by FST is denoted PM ′′′
.

The �rst disadvantage of this approach is its dependence on converting root words to their

phoneme sequences explicitly, which requires their presence in the CMU Pronouncing Dictio-

nary. Though this is not an issue for root words in the DWiki, which are all covered by the

dictionary, we �nd 6.36% of the root words in DBlind missing from CMU Phonetic Dictionary.

3
Not all neologisms are portmanteaus, so we manually choose those which are for our dataset.
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Figure 2.3: A sketch of the Baseline FST-based pipeline approach from [38], starting with the

input rood words jogging and juggling to the left, leading to the �nal output, joggling at the

rightmost end. This approach requires both root words x(1)
and x(2)

to be present in the CMU

Phonetic Dictionary to get the phonetic sequences for the �rst step, as shown.

Model Attn Ens Init Search Matches Distance

Baseline - - - - 45.39% 1.59

Forward

X × × Greedy 22.00% 1.98

X × X Greedy 28.00% 1.90

X × × Beam 13.25% 2.47

X × X Beam 15.25% 2.37

X × × Score 30.25% 1.64

X × X Score 32.88% 1.53

X X X Score 42.25% 1.33

X X × Score 41.25% 1.34

× × X Score 6.75% 3.78

× × × Score 6.50% 3.76

Backward

X × × Score 37.00% 1.53

X × X Score 42.25% 1.35

X X X Score 48.75% 1.12

X X × Score 46.50% 1.24

× × X Score 5.00% 3.95

× × × Score 4.75% 3.98

Table 2.1: 10-Fold Cross-Validation results, DWiki. Attn, Ens, Init denote attention, ensembling,

and initializing character embeddings respectively.

2.7 Experiments

In this section, we show results comparing various con�gurations of our model to the base-

line FST model of [38] (BASELINE). Models are evaluated using exact-matches (Matches) and

average Levenshtein edit-distance (Distance) w.r.t ground truth.

2.7.1 Objective Evaluation Results

In Experiment 1, we follow the same setup as [38]. DWiki is split into 10 folds. Each fold model

uses 8 folds for training, 1 for validation, and 1 for test. The average (10 fold cross-validation

style approach) performance metrics on the test fold are then evaluated. Table 3.3 shows the

results of Experiment 1 for various model con�gurations. We get the BASELINE numbers from

[38]. Our best model obtains 48.75% Matches and 1.12 Distance, compared to 45.39% Matches
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Model Attn Ens Init Search Matches Distance

Baseline - - - - 31.56% 2.32

Forward

X × X SCORE 25.26% 2.13

X × × SCORE 24.93% 2.32

X X × SCORE 31.23% 1.98

X X X SCORE 28.94% 2.04

Backward

X × X SCORE 25.75% 2.14

X × × SCORE 25.26% 2.17

X X × SCORE 31.72% 1.96

X X X SCORE 32.78% 1.96

Table 2.2: Results onDBlind (1223 Examples). In general, Backward architecture performs better

than Forward architecture.

and 1.59 Distance using BASELINE.

For Experiment 2, we seek to compare our best approaches from Experiment 1 to the BASE-

LINE on a large, held-out dataset. Each model is trained on DWiki and tested on DBlind. BASE-

LINE was similarly trained only on DWiki , making it a fair comparison. Table 2.2 shows the

results
4
. Our best model gets Distance of 1.96 as compared to 2.32 from BASELINE.

We observe that the Backward architecture performs better than Forward architecture, con-

�rming our hypothesis in §2.3.2. In addition, ablation results con�rm the importance of atten-

tion, and initializing the word embeddings. We believe this is because portmanteaus have high

�delity towards their root word characters and its critical that the model can observe all root

sequence characters, which attention manages to do as shown in Fig. 3.2.

Performance on Uncovered Examples

The set of candidates generated before scoring in the approximate SCORE decoding approach

sometimes do not include the ground truth. Some such uncovered examples are precise+exactly

→ prezactly and puke+extravaganza→ pukestravaganza. This holds true for 229 out of 1223 ex-

amples in DBlind. We compare the Forward approach along with a Greedy decoding strategy

to the Baseline approach for these examples.

Both Forward+Greedy and the Baseline get 0 Matches on these examples. The Dis-

tance for these examples is 4.52 for Baseline and 4.09 for Forward+Greedy. Further, a spot

checked inspection for a randomly chosen subsample also con�rms example outputs from

both the approaches to be of comparable quality. Hence, we see that one of our approaches

4
For BASELINE [38], we use the model from http://leps.isi.edu/fst/step-all.php
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Figure 2.4: Attention matrices while generating slurve from slider;curve, and bennifer from

ben;jennifer respectively, using Forward model. ; and . are separator and stop characters. Darker

cells are higher-valued

(Forward+Greedy) stands at par with the Baseline even for these examples.

2.7.2 Signi�cance Tests

Since our dataset is still small relatively small (1223 examples), it is essential to verify whether

Backward is indeed statistically signi�cantly better than Baseline in terms of Matches.

In order to do this, we use a paired bootstrap
5

comparison [98] between Backward and

Baseline in terms of Matches. Backward is found to be better (gets more Matches) than Base-

line in 99.9% (p = 0.999) of the subsets.

Similarly, Backward has a lower Distance than Baseline by a margin of 0.2 in 99.5% (p =

0.995) of the subsets.

2.7.3 Subjective Evaluation and Analysis

On inspecting outputs, we observed that often output from our system seemed good in spite

of high edit distance from ground truth. Such aspect of an output seeming good is not captured

satisfactorily by measures like edit distance. To compare the errors made by our model to the

baseline, we designed and conducted a human evaluation task on AMT.
6

In the survey, we show

human annotators outputs from our system and that of the baseline. We ask them to judge

which alternative is better overall based on following criteria: 1. It is a good shorthand for two

5
We average across M = 1000 randomly chosen subsets of DBlind, each of size N = 611 (≈ 1223/2)

6
We avoid ground truth comparison because annotators can be biased to ground truth due to its existing

popularity.
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Input forward backward Baseline G.Truth

shopping;marathon shopparathon shoathon shon shopathon

fashion;fascism fashism fashism fashism fashism

wiki;etiquette wikiquette wiquette wiquette wikiquette

clown;president clowident clownsident clownt clownsident

car;hijack carjack carjack cack carjack

dialectical;materialism dialerialism dialerialism dialism dialerialism

tinder;disaster tinter tindersaster tindisaster tindisaster

data;broadcasting datasting doadcasting dating datacasting

back;acronym backronym bacronym bacronym backronym

britain;regret bregret brigret bregret bregret

social;entertainer socialtainer sociartainer sentertainer socialtainer

chopstick;fork chopstork chopfork chork chork

happy;harmonius happonius happonius hharmonius happymonius

�exible;vegetarian �exarian �exetarian �egetarian �exitarian

laughter;orgasm lauggasm laughtergasm lasm laughgasm

frequency;recency frecency frecency frecency frecency

tender;enterpreneur tenpreneur tendereneur tenterpreneur tenderpreneur

fall;halloween falloween falloween falloween falloween

frisbee;golf frolf frisbolf frolf frolf

hitler;hillary hitlary hitlery hitlery hitlery

trump;economics trumpics trumponomics trumics trumponomics

�irtation;relationship �irtionship �irtationship �irtationship �irtationship

next;yesterday nexterday nesterday nexterday nexterday

lobster;monstrosity lobstrosity lonstrosity lobstrosity lobstrosity

global;english glonglish globlish glish globlish

puke;extravaganza pukaganza pukaganza puextravaganza pukestravaganza

beverage;avalanche bevalanche beveranche bavalanche bevelanche

excited;dimmer excimmer excimmer excitedimmer excimmer

phone;amnesia phonesia phonesia phonesia phonesia

camera;phone came camphone camphone camphone

bored;ordinary bordinary bordinary bordinary bordinary

precise;exactly prexactly prexactly prexactly prezactly

Table 2.3: Example outputs from di�erent models. Outputs are from best peforming con�gura-

tions of the models. G.Truth denotes the ground truth portmanteau.

original words 2. It sounds better. We requested annotation on a scale of 1-4. To avoid ordering

bias, we shu�ed the order of two portmanteau between our system and that of baseline. We

restrict annotators to be from Anglophone countries, have HIT Approval Rate > 80% and pay

0.40$ per HIT (5 Questions per HIT). We had 2 annotations per question and considered each

annotation as a separate judgement, without doing per-example aggregation. Nevertheless, the

two annotations showed a reasonably high Pearson correlation of 0.6191.

As seen in Table 2.4, output from our system was labelled better by humans as compared

to the baseline 58.12% of the time. Table 2.3 shows outputs from di�erent models for a few

examples.
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Judgement Percentage of total

Much Better (1) 29.06

Better (2) 29.06

Worse (3) 25.11

Much Worse (4) 16.74

Table 2.4: AMT annotator judgements on whether our system’s proposed portmanteau is better

or worse compared to the baseline

2.8 Conclusion

In this chapter, we explored a problem involving NLG as a creative process at the lexical level,

within the larger Realization stage of the CNP. Our contribution was primarily along the con-

tribution type [Method], and our devised approach necessitated Intervention to the typical

E2EN2PP as illustrated in Figure 2.1.

Speci�cally, we devised an end-to-end neural system to model portmanteau generation.

Our experiments show the e�cacy of devised system in predicting portmanteaus given the

root words. Our methods can be learnt without using external phonetic resources, and learn

from existing list of portmanteaus and word types.

We conclude that pretraining character embeddings on the English vocabulary helps the

model. When we additionally incorporate a character-level next-character prediction module

pretrained on word types through a prior, we are able to outperform earlier state-of-the-art

models based on explicit phonetic knowledge from [38].

This shows that the Intervention performed to the E2EN2PP as shown in Figure 2.1, leading

to a departure from its end-to-end nature, was indeed justi�ed and bene�ted end-task perfor-

mance.

Through human evaluation we show that our model’s predictions are superior to the base-

line. We have also released our dataset and code
7

to encourage further research on the phe-

nomenon of portmanteaus. An obvious extension to our work is to try similar models on mul-

tiple languages.

Broader Takeaways

First, let us consider how an architecture similar to ours can be devised for another NLG task

involving a creative aspect at the lexico-phonetic level. Note that we will only provide a high-

level sketch of the task herein.

7https://github.com/vgtomahawk/Charmanteau-CamReady
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Consider the task of generating quasi-punny brand names given a seed brand name ngram x

and a topic z. This task was one of the subtypes of creative brand naming studied in [148]. As an

example, consider a seed brand name x =Thanks a lot! and the topic z =defense manufacturing.

A potential punny brandname y = ŷ is Tanks a lot!. Note that the output brand name y need

not be restricted to be a word-substituted variant of x. For instance, if we had topic z =movie

tickets, a possible output would have been y = ŷ =Thanks allot!. From this example, we can

see that we need to model x, y and z as sequences of characters, just like the architectures we

used for portmanteau generation. Furthermore, a character-level factoring of models allows

the consideration of phonetics implicitly to a certain extent, which is not possible with a word

or subword-level factoring. This is a property even we exploit for our portmanteau generation

task.

Finally, let us consider how we can di�erently refactor the distribution P (y|x, z) to open up

the possibility of pretraining certain distribution components using unsupervised data sources,

beyond the small number of completely supervised gold triples Dgold = {(xi, zi, y∗i )}
i=|Dgold|
i=1

available for training, just like we used a Bayes Rule based refactoring to allow pretraining using

all word types in the English vocabulary for portmanteau generation earlier in this chapter.

argmax
y

P (y|x, z) = argmax
y

P (x, z, y)

P (x, z)

= argmax
y

P (x, z, y)

= argmax
y

P (x|z, y)P (z|y)P (y)

Since x is conditionally independent of z given y,

= argmax
y

P (x|y)P (z|y)P (y)

We’ll now describe how each of the three distributional components can be pretrained using

respective unsupervised data sources based on their availability.

1. P (x|y) can be pretrained using a list of homophonic word pairs or multiword expression

pairs.

2. P (z|y) can be pretrained using any list of keyword-sentence or keyword-expression pairs.

It is possible to construct such lists using o�-the-shelf keyword extraction algorithms such

as YAKE [23] and applying them to any collection of English sentences/phrases.

3. P (y) can be pretrained using any list of ngrams/phrases.

Note that these possibilities for pretraining get opened up only as a result of the refactoring.
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Having pretrained these components, we can �nally �netune all of them jointly on the fully

supervised training data Dgold.

Second, what are the other larger takeways from our chapter for NLG tasks involving a

creative aspect in general?

One clear takeaway we can see is that for creative NLG tasks in general, it is always mean-

ingful to consider alternative refactoring schemes for the probability distribution, rather than

jumping directly to explicitly modelling P (y|x) using a source-to-target sequence-to-sequence

model, where the output y is the output text (whose generation involves creative aspects) and

x is the input. The reason underlying this is that since creative artifacts are rarely produced,

the number of full, paired examples {xi, yi} tends to be small e.g there are atmost about 2000

unique portmanteaus and 1000 unique tongue twisters present in English text on the Web. The

explicit source-to-target formulation is locked in to be learnt from such paired data exclusively,

making it sensitive to the aforementioned shortage. Training solely on such limited data can

also make further amplify the learnt model’s tendency to replicate portions of the training data

at test-time [128], which is especially a disadvantage for tasks with a creative aspect to them.

Alternative refactoring schemes can decomposeP (y|x) into two or more components, some

of which can be potentially pretrained on unsupervised or distantly supervised data, depending

on the speci�cs of the refactoring as well as the task under consideration. For instance, in this

chapter, we use Bayes Rule to refactor P (y|x) as
P (x|y)P (y)

P (x)
. As a result, we were able to pretrain

P (y) using all word types in the English vocabulary.

This was of course, only one speci�c refactoring scheme - a variety of other candidate refac-

toring schemes can be considered based on the generation task at hand. For instance, intro-

ducing an intermediate hidden variable z based on properties of the task to refactor P (y|x) =∑
z P (y|z)P (z|x), where an approximate set of “silver" z values is derivable from x using some

task-speci�c heuristic.

We will now sketch an example of another creative NLG task and a possibly bene�cial

alternative refactoring scheme for it. Consider the task of abductively generating intermediate

hypotheses given a precondition x and a post-condition z 8
e.g x = “Stephen left his home in a

rush after waking up late, and forgot to close the windows." , z = “On returning home at night,

Stephen found the house in a meddled state with his belongings strewn around and water and mud

spilt over the �oor.". Several plausible intermediate hypotheses can be generated, such as y1 =

“A mid afternoon burst of wind and torrential rain got into his home, throwing unlocked cabinets

8
This can also be viewed as three-sentence story generation given a pre-prompt and post-prompt
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open and blowing around his clothes and accessories", y2 = “A pack of monkeys got in through the

window at 3pm, raiding andmessing up every corner of the house while Stephen was away" etc. We

have very limited examples with gold intermediate hypotheses i.eDgold = {(xi, zi, yi)}
i=|Dgold|
i=1 ,

although we do have access to a large number of approximate pre-condition/post-condition

pairs derived from consecutive sentences of the form Dsilver = (xapprox = ai, yapprox = bi)
9
.

The most obvious, source-to-target formulation for this would be to learn P (y|x, z). How-

ever, application of Bayes rule can lead us to a potentially better refactoring scheme for the

distribution. Using Bayes rule, we �rst get P (y|x, z) = P (x,y,z)
P (x,z)

. Further refactoring the nu-

merator, we get P (y|x, z) = P (z|y,x)P (y|x)P (x)
P (z|x)P (x)

. Since we are only interested in the most likely

hypothesis ŷ = argmaxP (y|x, z), it would be su�cient to learn P (z|y, x)P (y|x)P (x). Now,

we can see that one of these components can be pretrained using examples from Dsilver, in

the same way we pretrained one of our model components in this chapter using word types

from the English vocabulary. Speci�cally, we can pretrain P (y|x) using y = yapprox = bi and

x = xapprox = ai. We can also pretrain P (x) using x = xapprox = ai.

To conclude, in this subsection, we saw how our learning architecture can be adopted and/or

provide takeaways/lessons for a) Speci�cally, for lexico-phonetic generation tasks with a cre-

ative aspect b) More generally, for any NLG task with a creative aspect to it.
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9
Since we are only sketching out this task here, we do not delve too much into the speci�cs of the sources

such approximate unsupervised data can be derived. Another source can be external textual entailment datasets

which are more readily available, from where we can use the premise and hypothesis as xapprox and yapprox
respectively.
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Chapter 3

Stylistic Surface Transduction To

Shakespearize Modern English

(EMNLP 2017’WS)

[Knowledge][Method]

Most of us in speaking and writing

English use only one pronoun of address;

we say ‘you’ to many persons and ‘you’

to one person. The pronoun ‘thou’ is

reserved, nowadays, to prayer and naive

poetry, but in the past it was the form of

familiar address to a single person. At

that time ‘you’ was the singular of

reverence and of polite distance, and also

the invariable plural.

R.Brown & A. Gilman, ‘The Pronouns of

Power & Solidarity’, 1960

As users get ever more habituated to using, interacting and even co-authoring with NLG

systems, there is increasing expectation on them to exhibit consistent personality [222] and also

be accomodative [216] towards user preferences and situation of use. Together, one can think of

these as aspects of target style. Hence, NLG systems should be able to transfer their content
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to match aspect values for each aspect of target style. From the perspective of Halliday’s SFL,

style transfer can be seen as having the changing of extra-textual aspects as its communicative

goal, while keeping the textual aspect constant - these aspects could be either interpersonal or

ideational in nature. Diachronic register of language is one example of an interpersonal aspect,

being determined by the author of a text as well as the historical period in which the author

resides. Speci�cally, the term diachronic refers to the perspective of language as a changing

variable that evolves through chronos i.e time. The diachronic register of a language is simply

denotes its state at a given period in history. For instance, consider the two variants I stand

on sudden haste and I am in a rush. Though a native English speaker would likely understand

both, and understand both of these to means the same thing in ideational terms, they would

certainly �nd the �rst one a strange way of conveying the same idea, and rightly so, for it is

how Shakespeare originally said it, with the latter one being a Modern English paraphrase from

Sparknotes.com

Though traditionally often viewed as the least challenging level in terms of reasoning and

knowledge, surface level language abstractions can nonetheless prove a rich source to moti-

vate task-speci�c knowledge and inductive biases. Moreover, by explicitly incorporating such

biases and easing the learning of surface realization level transformations, we make it eas-

ier for the model to learn higher-order sentential (microplanning-level) and extra-sentential

(macroplanning-level) biases

Though traditionally often viewed as the least challenging level in terms of reasoning and

knowledge, surface level language abstractions can nonetheless prove a rich source to moti-

vate task-speci�c knowledge and inductive biases. Moreover, by explicitly incorporating such

biases and easing the learning of surface realization level transformations, we make it eas-

ier for the model to learn higher-order sentential (microplanning-level) and extra-sentential

(macroplanning-level) biases

Through this chapter, we present an example of how knowledge and inductive bias emanat-

ing from the surface realization level can aid neural S2S models for diachronic style transfer.

i) We explicitly provide source→ target surface realization correspondences through incorpo-

rating dictionary knowledge into word representations. The “word representation" here is the

shared, jointly pretrained space in which both source and target words are embedded; we also

empirically show that having a shared embedding space is better than having separate ones

helps, as also that joint pretraining is bene�cial.

ii) We furnish the model with the ability to copy over words besides generating them tabula

rasa, based on the inductive bias
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Speci�cally, we explore automated methods to transform text from modern English to Shake-

spearean English using an end to end trainable neural model with pointers to enable copy ac-

tion. To ameliorate the de�cient learning of embeddings due to a limited amount of parallel data,

we pretrain embeddings of words by leveraging external dictionaries mapping Shakespearean

words to modern English words as well as additional text. Our methods are able to get a BLEU

score of 31+, an improvement of ≈ 6 points over the strongest baseline. We publicly release

our code to foster further research in this area.
1

3.1 Introduction

Given a source text, human speakers/authors/content moderators often morph it further using

a variety of lexical and grammatical transformations, adjusting the degree of formality, usage

of catchy phrases, and other such stylistic changes; with non-textual subgoals in mind e.g to

make it more appealing. For instance, assuming a “make more appealing" subgoal, di�erent

text styles appeal to di�erent target user segments [196] [96] [205]. Millenials may �nd text

using social media slangs to be more appealing, while middle-aged New Yorkers may �nd the

inclusion of Yiddish and Italian slang to be so. Thus there is a need to e�ectively adapt text to

di�erent target styles. However, manually transforming text to a desired style can be a tedious

process.

There have been increased e�orts towards machine assisted text content creation and edit-

ing through automated methods for summarization [194] , brand naming [74], text expansion

[221], etc. However, there is a dearth of automated solutions for adapting text quickly to dif-

ferent styles. We consider the problem of transforming text written in modern English text to

Shakepearean style English. For the sake of brevity and clarity of exposition, we henceforth

refer to the Shakespearean sentences/side as Original and the modern English paraphrases as

Modern.

Unlike more traditional domain or style transfer settings e.g., formality, our task is distin-

guished by the fact that the two styles employ diachronically disparate registers of English -

one style uses the contemporary language while the other uses Early Modern English 2
from the

Elizabethan Era (1558-1603). Although Early Modern English is not classi�ed as a di�erent lan-

guage (unlike Old English and Middle English), it does have novel words (acknown and belike),

novel grammatical constructions (two second person forms - thou (informal) and you (formal)

1
https://github.com/harsh19/Shakespearizing-Modern-English

2https://en.wikipedia.org/wiki/Early_Modern_English
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No Type Text

1

Modern Oh my, my bones ache so much

Original Fie, how my bones ache !

Copy �e, how my bones ache !

SimpleS2S you’ll be, sir, what the bones are tired .

Stat Oh my, my bones ache so much .

2

Modern I am in a rush .

Original I stand on sudden haste .

Copy i stand on sudden haste .

SimpleS2S i’m stand right here .

Stat I am in a Fly

3

Modern Give my compliments to your lady

Original Commend me to thy lady

Copy commend me to your lady

SimpleS2S give my regards to your lady

Stat give my praises to your lady

4

Modern Showing mercy by pardoning killers only causes more murders .

Original Mercy but murders, pardoning those that kill .

Copy mercy but murders, those those who kill us .

SimpleS2S but except the murders to those murders to kill you .

Stat of mercy by pardoning killers causes more dire.

5

Modern Holy Saint Francis, this is a drastic change !

Original Holy Saint Francis, what a change is here !

Copy holy saint francis, what a change is here !

SimpleS2S it’s the holy �ute, what’s the changed !

Stat Holy Saint Francis, this is a drastic change !

6

Modern was that my father who left here in such a hurry ?

Original Was that my father that went hence so fast ?

Copy was that my father that went went so fast ?

SimpleS2S was that my father was so that ?

Stat was that my father that left here in such a haste ?

7

Modern Give me one kiss and I’ll go down .

Original One kiss, and I’ll descend .

Copy one kiss me, and I’ll descend .

SimpleS2S one kiss,and I come down .

Stat Give me a kiss, and I’ll go down .

8

Modern then the window lets day in, and life goes out the window .

Original Then, window, let day in and life out .

Copy then, window out, and day life .

SimpleS2S then she is just a life of life, let me life out of life .

Stat then the window will let day in, and life out .

Table 3.1: Examples from dataset showing modern paraphrases (Modern) from the learning

resource Sparknotes.com of few sentences from Shakespeare’s plays (Original). We also show

transformation of modern text to Shakespearean text from our models (Copy, SimpleS2S and

Stat).
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[21]), semantically drifted senses (e.g fetches is a synonym of excuses) and non-standard orthog-

raphy [177]. Additionally, there is a domain di�erence since the Shakespearean play sentences

are from a dramatic screenplay whereas the parallel modern English sentences are meant to be

simpli�ed explanation for high-school students.

Prior works in this �eld leverage a language model for the target style, achieving transfor-

mation either using phrase tables [246], or by inserting relevant adjectives and adverbs [196].

Such works have limited scope in the type of transformations that can be achieved. Firstly, it is

di�cult for human curated canned phrase table resources to cover the combinatorially increas-

ing number of phrase pairs. Secondly, phrase tables cannot take context into account when

doing phrase→ phrase replacements. Moreover, statistical and rule MT based systems do not

provide a direct mechanism to a) share word representation information between source and

target sides b) incorporating constraints between words into word representations in end-to-

end fashion. Neural sequence-to-sequence models, on the other hand, provide such �exibility.

They provide direct mechanisms to handle all of these — Sharing source and target embed-

dings to share word-representation information, pretraining to leverage external information,

and adding constraints to word representations using [48].

Our main contributions are as follows:

• We use a sentence level sequence to sequence neural model with a pointer network com-

ponent to enable direct copying of words from input. We demonstrate that this method

performs much better than prior phrase translation based approaches for transforming

Modern English text to Shakespearean English.

• We leverage a dictionary providing mapping between Shakespearean words and modern

English words to retro�t pre-trained word embeddings. Incorporating this extra infor-

mation enables our model to perform well in spite of small size of parallel data.

The rest of the chapter is organized as follows. We �rst provide a brief analysis of our dataset

in (§3.2). We then elaborate on details of our methods in (§3.3, §3.4, §3.5, §3.6). We then discuss

experimental setup and baselines in (§3.7). Thereafter, we discuss the results and observations

in (§3.8). We conclude with discussions on related work (§3.9) and future directions (§3.10).

3.2 Dataset

Our dataset is a collection of line-by-line modern paraphrases for 16 of Shakespeare’s 36 plays

(Antony & Cleopatra, As You Like It, Comedy of Errors, Hamlet, Henry V etc) from the educational
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Original Modern
# Word Tokens 217K 200K

# Word Types 12.39K 10.05K

Average Sentence Length 11.81 10.91

Entropy (Type.Dist) 6.15 6.06

∩Word Types 6.33K

Table 3.2: Dataset Statistics

site Sparknotes3
. This dataset was compiled by Xu et al. [245, 246] and is freely available on

github.
4

14 plays covering 18,395 sentences form the training data split. We kept 1218 sentences

from the play Twelfth Night as validation data set. The last play, Romeo and Juliet, comprising

of 1462 sentences, forms the test set.

3.2.1 Examples

Table 3.1 shows some parallel pairs from the test split of our data, along with the corresponding

target outputs from some of our models. Copy and SimpleS2S refer to our best performing

attentional S2S models with and without a Copy component respectively. Stat refers to the best

statistical machine translation baseline using o�-the-shelf GIZA++ aligner and MOSES. We can

see through many of the examples how direct copying from the source side helps the Copy

generates better outputs than the SimpleS2S. The approaches are described in greater detail in

(§3.3) and (§3.7).

3.2.2 Analysis

Table 3.2 shows some statistics from the training split of the dataset. In general, the Original

side has longer sentences and a larger vocabulary. The slightly higher entropy of the Original

side’s frequency distribution indicates that the frequencies are more spread out over words.

Intuitively, the large number of shared word types indicates that sharing the representation

between Original and Modern sides could provide some bene�t.
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Figure 3.1: Depiction of our overall architecture (showing decoder step 3). Attention weights

are computed using previous decoder hidden state h2, encoder representations, and sentinel

vector. Attention weights are shared by decoder RNN and pointer models. The �nal probabil-

ity distribution over vocabulary comes from both the decoder RNN and the pointer network.

Similar formulation is used over all decoder steps

3.3 Method Overview

The Overall architecture of our system is shown in Figure 3.1. We use a bidirectional LSTM

to encode the input modern English sentence. Our decoder side model is a mixture model of

RNN module amd pointer network module. The two individual modules share the attentions

weights over encoder states, although it is not necessary to do so. The decoder RNN predicts

probability distribution of next word over the vocabulary, while pointer model predicts proba-

bility distribution over words in input. The two probabilities undergo a weighted addition, the

weights themselves computed based on previous decoder hidden state and the encoder outputs.

Let x,y be the some input - output sentence pair in the dataset. Both input x as well as

output y are sequence of tokens. x = x1x2...xTenc , where Tenc represents the length of the

input sequence x. Similarly, y = y1y2...yTdec . Each of xi, yj is a token from the vocabulary.

3.4 Token embeddings

Each token in vocabulary is represented by aM dimensional embedding vector. Let vocabulary

V be the union of modern English and Shakepearean vocabularies i.e. V = Vshakespeare∪Vmodern.

3www.sparknotes.com
4http://tinyurl.com/ycdd3v6h
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Eenc and Edec represent the embedding matrices used by encoder and decoder respectively (

Eenc, Edec ∈ R|V |×M ). We consider union of the vocabularies for both input and output em-

beddings because many of the tokens are common in two vocabularies, and in the best perform-

ing setting we share embeddings between encoder and decoder models. Let Eenc(t), represent

encoder side embeddings of some token t. For some input sequence x, Eenc(x) is given as

(Eenc(x1), Eenc(x2), ...).

3.4.1 Pretraining of embeddings

Learning token embeddings from scratch in an end-to-end fashion along with the model greatly

increases the number of parameters. To mitigate this, we consider pretraining of the token

embeddings. We pretrain our embeddings on all training sentences. We also experiment with

adding additional data from PTB [127] for better learning of embeddings. Additionally we

leverage a dictionary mapping tokens from Shakespearean English to modern English.

We consider four distinct strategies to train the embeddings. In the cases where we use ex-

ternal text data, we �rst train the embeddings using both the external data and training data, and

then for the same number of iterations on training data alone, to ensure adaptation. Note that

we do not directly use o�-the-shelf pretrained embeddings such as Glove [157] and Word2Vec

[137] since we need to learn embeddings for novel word forms (and also di�erent word senses

for extant word forms) on the Original side.

Plain

This method is the simplest pre-training method. Here, we do not use any additional data, and

train word embeddings are trained on the union of Modern and Original sentences.

PlainExt

In this method, we add all the sentences from the external text source (PTB) in addition to

sentences in training split of our data.

Retro

We leverage a dictionary L of approximate Original → Modern word pairs [245, 246], crawled

fromshakespeare-words.com, a source distinct from Sparknotes. We explicitly add the

two 2nd persons and their corresponding forms (thy, thou, thyself etc) which are very frequent
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but not present in L. The �nal dictionary we use has 1524 pairs. Faruqui et al [48] proposed a

retro�tting method to update a set of word embeddings to incorporate pairwise similarity con-

straints. Given a set of embeddings pi ∈ P , a vocabulary V , and a set C of pairwise constraints

(i, j) between words, retro�tting tries to learn a new set of embeddings qi ∈ Q to minimize the

following objective:

f(Q) = δ

i=|V |∑
i=1

(pi − qi)2 + ω
∑

(i,j)∈C

(qi − qj)2 (3.1)

We use their o�-the-shelf implementation
5

to encode the dictionary constraints into our pre-

trained embeddings, setting C = L and using suggested default hyperparameters for δ, ω and

number of iterations.

RetroExt

This method is similar to Retro, except that we use sentences from the external data (PTB) in

addition to training sentences.

We use None to represent the settings where we do not pretrain the embeddings.

3.4.2 Fixed embeddings

Fine-tuning pre-trained embeddings for a given task may lead to over�tting, especially in sce-

narios with small amount of supervised data for the task [123]. This is because embeddings for

only a fraction of vocabulary items get updated, leaving the embeddings unchanged for many

vocabulary items. To avoid this, we consider �xed embeddings pretrained as per procedures

described earlier. While reporting results in Section (§3.8), we separately report results for �xed

(FIXED) and trainable (VAR) embeddings, and observe that keeping embeddings �xed leads to

better performance.

3.5 Method Description

In this section we give details of the various modules in the devised neural model.

5github.com/mfaruqui/retrofitting
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3.5.1 Encoder model

Let

−−−−−−→
LSTMenc and

←−−−−−−
LSTMenc represent the forward and reverse encoder. h

−→enc
t represent hidden

state of encoder model at step t (h
−→enc
t ∈ RH

). The following equations describe the model:

h
−−→enc
0 =

−→
0 ,h

←−−enc
|x| =

−→
0 (3.2)

h
−−→enc
t =

−−−−−−→
LSTMenc(h

enc
t−1, Eenc(xt)) (3.3)

h
←−−enc
t =

←−−−−−−
LSTMenc(h

enc
t+1, Eenc(xt)) (3.4)

henc
t = h

−−→enc
t + h

←−−enc
t (3.5)

We use addition to combine the forward and backward encoder states, rather than concate-

nation that is standardly used, since it doesn’t add extra parameters, which is important in a

low-data scenario such as ours.

3.5.2 Attention

Let hdect represent the hidden state of the decoder LSTM at step t. Let Edec(yt−1) represent the

decoder side embeddings of previous step output. We use special START symbol at t = 1.

We �rst compute a query vector, that is a linear transformation of hdect−1. A sentinel vector

s ∈ RH
is concatenated with the encoder states to create Fatt ∈ R(Tenc+1)×H

, where Tenc repre-

sents the number of tokens in encoder input sequence x. A normalized attention weight vector

αnorm is computed. The value g, which corresponds to attention weight over sentinel vector,

represents the weight given to the decoder RNN module while computing output probabilties.

q = hdec
t−1Wq Wq ∈ RH×H

(3.6)

Fatt = concat(henc
1..Tenc

, s) Fatt ∈ R(Tenc+1)×H
(3.7)

αi =

H∑
j=1

(tanh(F
(ij)
att qj)) + bi αi,bi ∈ R (3.8)

αnorm = softmax(α) αnorm ∈ RTenc+1
(3.9)

β = αnorm
1,2,...,Tenc

β ∈ RTenc
(3.10)

g = αnorm
Tenc+1 g ∈ R (3.11)
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3.5.3 Pointer model

As pointed out earlier, a pair of corresponding Original and Modern sentences have signi�cant

vocabulary overlap. Moreover, there are lot of proper nouns and rare words that might not be

predicted by a sequence to sequence model. To rectify this, pointer networks have been used to

enable copying of tokens from input directly [135]. The pointer module provides location based

attention, and output probability distribution due to pointer network module can be expressed

as follows:

PPTR
t (w) =

∑
xj=w

(βj) (3.12)

3.5.4 Decoder RNN

Summation of encoder states weighed by corresponding attention weights yields context vector.

Output probabilities over vocabulary as per the decoder LSTM module are computed as follows:

ct =

Tenc∑
i=1

βi h
enc
i (3.13)

hdec
t = LSTM(hdec

t−1, [concat(Edec(yt−1), ct)]) (3.14)

PLSTM
t = softmax(Wout[concat(hdec

t , ct)] + bout) (3.15)

During training, we feed the ground truth for yt−1, whereas while making predictions on test

data, predicted output from previous step is used instead.

3.5.5 Output prediction

Output probability of a token w at step t is a weighted sum of probabilities from decoder LSTM

model and pointer model given as follows:

Pt(w) = g × PLSTM
t (w) + (1− g)× PPTR

t (w) (3.16)

P PTR
t (w) takes a non-zero value only if w occurs in input sequence, otherwise it is 0. Forc-

ing g = 0 would correspond to not having a Copy component, reducing the model to a plain

attentional S2S model, that we refer to as a SimpleS2S model.
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3.6 Loss functions

Cross entropy loss is used to train the model. For a data point (x,y) ∈ D and predicted proba-

bility distributions Pt (w) over the di�erent words w ∈ V for each time step t ∈ {1, . . . , Tdec},
the loss is given by

−
Tdec∑
t=1

log p
(
Pt (yt)

)
(3.17)

Sentinel Loss (SL): Following from work by [135], we consider additional sentinel loss.

This loss function can be considered as a form of supervised attention. Sentinel loss is given as

follows:

−
Tdec∑
t=1

log(g(t) +
∑
xj=yt

(β
(t)
j )) (3.18)

We report the results demonstrating the impact of including the sentinel loss function (+SL).

3.7 Experiments

In this section we describe the experimental setup and evaluation criteria used.

3.7.1 Preprocessing

We lowercase sentences and then use NLTK’s PUNKT tokenizer [95] to tokenize all sentences

into their constituent words (tokens). The Original side has certain characters like æ that

are not extant in today’s English language. We map these characters to the closest equivalent

character(s) used today (e.g æ→ ae)

3.7.2 Baseline Methods

As-it-is

Since both source and target side are English, just replicating the input on the target side is a

valid and competitive baseline, with a BLEU of 21+.
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Dictionary

Xu et al. [246] provide a dictionary mapping between large number of Shakespearean and

modern English words. We augment this dictionary with pairs corresponding to the 2nd person

thou (thou, thy, thyself ) since these common tokens were not present.

Directly using this dictionary to perform word-by-word replacement is another admittable

baseline. As was noted by Xu et al. [246], this baseline actually performs worse than As-it-is.

This could be due to its performing aggressive replacement without regard for word context.

Moreover, a dictionary cannot easily capture one-to-many mappings as well as long-range de-

pendencies.
6

O�-the-shelf SMT

To train statistical machine translation (SMT ) baselines, we use publicly available open-source

toolkit MOSES [99], along with the GIZA++ word aligner [147], as was done in [246]. For

training the target-side LM component, we use the lmplz toolkit within MOSES to train a 4-

gram LM. We also use MERT [147], available as part of MOSES, to tune on the validation set.

For fairness of comparison, it is necessary to use the pairwise dictionary and PTB while

training the SMT models as well - the most obvious way for this is to use the dictionary and PTB

as additional training data for the alignment component and the target-side LM respectively.

We experiment with several SMT models, ablating for the use of both PTB and dictionary. In

3.8, we only report the performance of the best of these approaches.

3.7.3 Evaluation

Our primary evaluation metric is BLEU [151] . We compute BLEU using the freely available

and very widely used perl script
7

from the MOSES decoder.

We also report PINC [28], a metric which originates from paraphrase evaluation literature

and evaluates how much the target side paraphrases resemble the source side. Given a source

sentence s and a target side paraphrase c generated by the system, PINC(s,c) is de�ned as

PINC(s, c) = 1−
1

N

n=N∑
n=1

|Ngram(c, n) ∩Ngram(s, n)|
|Ngram(c, n)|

6
thou-thyself and you-yourself

7http://tinyurl.com/yben45gm
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where Ngram(x, n) denotes the set of n-grams of length n in sentence x, and N is the max-

imum length of ngram considered. We set N = 4. Higher the PINC, greater the novelty of

paraphrases generated by the system. Note, however, that PINC does not measure �uency of

generated paraphrases. Moreover, it cannot be used to compare against references. Hence, it

rewards all changes similarly irrespective of their �uency as well as adequacy, merely propor-

tional to the extent of ngrams edited. As a result, it can merely be used as an auxiliary metric.

3.7.4 Training and Parameters

We use a minibatch-size of 32 and the ADAM optimizer [93] with learning rate 0.001, momen-

tum parameters 0.9 and 0.999, and ε = 10−8. All our implementations are written in Python

using Tensor�ow 1.1.0 framework.

For every model, we experimented with two con�gurations of embedding and LSTM size -

S (128-128), ME (192-192) and L (256-256). Across models, we �nd that theME con�guration

performs better in terms of highest validation BLEU. We also �nd that larger con�gurations

(384-384 & 512-512) fail to converge or perform very poorly.
8

Here, we report results only for

the ME con�guration for all the models. For all our models, we picked the best saved model

over 15 epochs that has the highest validation BLEU.

3.7.5 Decoding

At test-time we use greedy decoding to �nd the most likely target sentence.
9

We also experi-

ment with a post-processing strategy that replaces UNKs in the target output with the highest

aligned (maximum attention) source word. We �nd that this gives a small jump in BLEU of

about 0.1-0.2 for all neural models.
10

Our best model, for instance, gets a jump of 0.14 to reach

a BLEU of 31.26 from 31.12.

3.8 Results

The results in Table 3.3 con�rm most of our hypotheses about the right architecture for this

task.

8
This is expected given the small parallel data

9
Empirically, we observed that beam search does not give improvements for our task

10
Since e�ect is small and uniform, we report BLEU before post-processing in Table 3.3
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• Copy component: We can observe from Table 3.3 that the various Copy models each

outperform their SimpleS2S counterparts by atleast 7-8 BLEU points.

• Retro�tting dictionary constraints: The Retro con�gurations generally outperform

their corresponding Plain con�gurations. For instance, our best con�gurationCopy.Yes.RetroExtFixed

gets a better BLEU than Copy.Yes.PlainExtFixed by a margin of atleast 11.

• Sharing Embeddings: Sharing source and target side embeddings bene�ts all the Retro

con�gurations, although it slightly deteriorates performance (about 1 BLEU point) for

some of the Plain con�gurations.

• Fixing Embeddings: Fixed con�gurations always perform better than corresponding

Var ones (save some exceptions). For instance, Copy.Yes.RetroExtFixed get a BLEU of 31.12

compared to 20.95 forCopy.Yes.RetroExtVar. Due to �xing embeddings, the former has just

half as many parameters as the latter (5.25M vs 9.40M)

• E�ect of External Data: Pretraining with external data Ext works well along with

retro�tting Retro. For instance, Copy.Yes.RetroExtFixed gets a BLEU improvement of 2+

points over Copy.Yes.RetroFixed

• E�ect of Pretraining: For the SimpleS2S models, pre-training adversely a�ects BLEU.

However, for the Copy models, pre-training leads to improvement in BLEU. The simplest

pretrainedCopy model,Copy.No.PlainVar has a BLEU score 1.8 higher thanCopy.No.NoneVar.

• PINC scores: All the neural models have higher PINC scores than the statistical and

dictionary approaches, which indicate that the target sentences produced di�er more

from the source sentences than those produced by these approaches.

• Sentinel Loss: Adding the sentinel loss does not have any signi�cant e�ect, and ends up

reducing BLEU by a point or two, as seen with the Copy+SL con�gurations.

3.8.1 Qualitative Analysis

Figure 3.2 shows the attention matrices from our best Copy model (Copy.Yes.RetroExtFixed) and

our best SimpleS2S model (SimpleS2S.Yes.Retro�xed) respectively for the same input test sen-

tence. Without an explicit Copy component, the SimpleS2S model cannot predict the words

saint and francis, and drifts o� after predicting incorrect word �ute.

Table 3.1 presents model outputs for some test examples. In general, theCopy model outputs

resemble the ground truth more closely compared to SimpleS2S and Stat . In some cases, it faces

issues with repetition (Examples 4 and 6) and �uency (Example 8).
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Model Sh Init BLEU PINC

As-it-is - - 21.13 0.0

Dictionary - - 17.00 26.64

Stat - - 24.39 32.30

SimpleS2S

× NoneV ar 11.66 85.61

× PlainV ar 9.27 86.52

× PlainExtV ar 8.73 87.17

× RetroV ar 10.57 85.06

× RetroExtV ar 10.26 83.83

X NoneV ar 11.17 84.91

X PlainV ar 8.78 85.57

X PlainF ixed 8.73 89.19

X PlainExtV ar 8.59 86.04

X PlainExtF ixed 8.59 89.16

X RetroV ar 10.86 85.58

X RetroF ixed 11.36 85.07

X RetroExtV ar 11.25 83.56

X RetroExtF ixed 10.86 88.80

Copy

× NoneV ar 18.44 83.68

× PlainV ar 20.26 81.54

× PlainExtV ar 20.20 83.38

× RetroV ar 21.25 81.18

× RetroExtV ar 21.57 82.89

X NoneV ar 22.70 81.51

X PlainV ar 19.27 83.87

X PlainF ixed 21.20 81.61

X PlainExtV ar 20.76 83.17

X PlainExtF ixed 19.32 82.38

X RetroV ar 22.71 81.12

X RetroF ixed 28.86 80.53

X RetroExtV ar 20.95 81.94

X RetroExtF ixed 31.12 79.63

Copy+SL

× NoneV ar 17.88 83.70

× PlainV ar 20.22 81.52

× PlainExtV ar 20.14 83.46

× RetroV ar 21.30 81.22

× RetroExtV ar 21.52 82.86

X NoneV ar 22.72 81.41

X PlainV ar 21.46 81.39

X PlainF ixed 23.76 81.68

X PlainExtV ar 20.68 83.18

X PlainExtF ixed 22.23 81.71

X RetroV ar 22.62 81.15

X RetroF ixed 27.66 81.35

X RetroExtV ar 24.11 79.92

X RetroExtF ixed 27.81 84.67

Table 3.3: Test BLEU results. Sh denotes encoder-decoder embedding sharing (No=×,Yes=X) .

Init denotes the manner of initializing embedding vectors. The -Fixed or -Var su�x indicates

whether embeddings are �xed or trainable. COPY and SIMPLES2S denote presence/absence of

Copy component. +SL denotes sentinel loss.
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Figure 3.2: Attention matrices from a Copy (top) and a simple S2S (bottom) model respectively

on the input sentence “Holy Saint Francis, this is a drastic change!" . < s > and < /s > are start

and stop characters. Darker cells are higher-valued.

3.9 Related Work

There have been some prior work on style adaptation. Xu et al. [246] use phrase table based

statistical machine translation to transform text to target style. On the other hand our method

is an end-to-end trainable neural network. Saha Roy et al [196] leverage di�erent language

models based on geolocation and occupation to align a text to speci�c style. However, their

work is limited to addition of adjectives and adverbs. Our method can handle more generic

transformations including addition and deletion of words.

Pointer networks [231] allow the use of input-side words directly as output in a neural S2S

model, and have been used for tasks like extractive summarization [206] [251] and question

answering [234]. However, pointer networks cannot generate words not present in the input.

A mixture model of recurrent neural network and pointer network has been shown to achieve

good performance on language modeling task [135].

S2S neural models, �rst devised by [224], and enhanced with a attention mechanism by [9],

have yielded state-of-the-art results for machine translation (MT), , summarization [194], etc.

In the context of MT, various settings such as multi-source MT [258] and MT with external in-

formation [209] have been explored. Distinct from all of these, our chapter attempts to solve a

Modern English→ Shakespearean English style transformation task. Although closely related

to both paraphrasing and MT, our task has some di�erentiating characteristics such as con-

siderable source-target overlap in vocabulary and grammar (unlike MT), and di�erent source

and target language (unlike paraphrasing). [60] have devised a neural sequence-to-sequence

solution for generating a portmanteau given two English root-words. Though their task also
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involves large overlap in target and input, they do not employ any special copying mechanism.

Unlike text simpli�cation and summarization, our task does not involve shortening content

length.

3.10 Conclusion

We have presented here a study of diachronic style transfer to Shakespearean style English.

This is an example where the communicative goal was to alter the particular interpersonal

aspect/facet of the author’s diachronic register and change its value. Naturally, a great many

number of variations of the style transfer task exist based on the speci�c interpersonal and

ideational aspects one wishes to alter, and their desired target con�guration. Nevertheless, the

observations we make here do generalize to other style transfer tasks as well as control tasks in

general, as we shall discuss in §3.10.1

Our contribution was primarily along the contribution type [Method] and [Knowledge]

Speci�cally, in this chapter, our recommended approach leads to three major changes in the

typical E2EN2PP pipeline. First, we recommend using a mixture model of pointer network and

LSTM to transform Modern English text to Shakespearean style English. This exploits the prop-

erty of a shared language between source and target sides, a property likely to be shared by a

large number of style transfer tasks. Second, we recommend having a shared representation

(embedding) space for source and target words initially, and pretrain this using a combined cor-

pus of sentences from either of the sides. Third, we devise a mechanism based on retro�tting

[48] to incorporate pairwise lexical source word→ target word constraints from a dictionary,

into this initial shared representation. This third step represents incorporation of knowledge

from a resource external to the communicative goal.

We demonstrate the e�ectiveness of our devised approach over the baselines. Our experi-

ments reveal the utility of incorporating input-copying mechanism, and using dictionary con-

straints for problems with shared (but non-identical) source-target sides and sparse parallel

data. We release our code publicly to foster further research on stylistic transformations on

text.
11

The work has since then been positively received by the community with over 130

citations and 46 publications explicitly using this as a baseline.

Sparknotes also provides similar translations to Modern English for the Anglo-Saxon Age

epic Beowulf 12
(Old English) and the famous monastic devotional chronicle Canterbury Tales

11
https://github.com/harsh19/Shakespearizing-Modern-English

12tinyurl.com/d5ntme7
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(Middle English). A possible future direction is to test the model for styles other than Shake-

spearean English would be develop models to translate to these styles/languages. An additional

extension would be to develop a single uni�ed encoder-decoder model for translation to any

diachronic English style, in the manner of [83], who developed an any-source language to any-

target language uni�ed translation model.

3.10.1 Broader Takeaways

The property of a shared language and the resultant two enhancements we devise are likely

applicable to almost any style transfer task. Speci�cally, these two enhancements are:

1. Using a pointer component in the generating distribution to easen the process of learning to

copy over the style-invariant, textual aspect correlated portions of the input. Even the most

disparate source and target styles are likely to contain some textual overlap by sheer virtue

of them being meaning invariant and sharing the same script and language. This textual

overlap would stem from named entities (e.g the KGB, Banquo, Macbeth, Benjamin Disraeli,

Donald Trump etc), strongly topical words (treaty, detente, �efdom, shield, bill, election etc)

and other such word classes strongly related to the core meaning of the utterance being

transformed.

2. Using a jointly pretrained initial shared representation for both source (input) and target

(output) sides. Sharing representations is a simple modelling change, while joint pretraining

is always going to be feasible given that we don’t necessarily need paired source-target data

for this, all that is needed is unpaired text from both directions, that is likely to be available in

atleast some reasonable quantity given that the task is being posed as a reasonably learnable

one.

The above two correspond to purely methodological improvements that can be made, and

are not dependent on any further knowledge sources external to the communicative goal.

The third enhancement we devised was, as the reader would recollect, based on incorpo-

rating pairwise lexical source word→ target word constraints from a dictionary, into the ini-

tial, post-pretraining shared word representation via retro�tting [48]. This third step requires

incorporation of knowledge from a resource external to the communicative goal, namely a

dictionary-like resource that provides some (though not necessarily exhaustive) strong pair-

wise correspondences between some source and target word types. This enhancement is not

as widely generalizable as the �rst two, since

1. Not all (source style, target style) pairs i.e style transfer settings would necessarily exhibit
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strong pairwise lexical correspondences. In this case, even if one were try to construct a

collection of pairwise constraints, it would either be completely empty or of negligible size.

2. A resource of the nature required may not be available, even though the style transfer setting

does exhibit strong pairwise lexical correspondences. How to approximately extract such

constraints in an automatic fashion is an interesting direction to explore for future work.

Possible intuitions to explore include

• Using analogies to �nd facet correspondences (e.g gender, wealth etc) rather than (word,word)

correspondences. E.g the gender analogy vector can be found by averaging over seed

pairs such as (king,queen), (man,woman) etc in both source and target spaces (This

procedure will have to be careful in choosing only those seed pairs that are invariant

to the style change, if at all they exist). Now, one can try to align the gender analogy

vectors of the source and target spaces to point in the same direction, using the same

retro�tting procedure.

• Using statistical properties such as PMI or mutual information to automatically mine

out such (source,target) word form correspondences from the paired training data.

Nevertheless, some strong lexical correspondences are indeed found in many popular and

practically style transfer settings e.g formality and politeness, and this enhancement would be

useful in such cases. For instance, a Prof. X Y in a polite setting would always get replaced by a

X in the impolite setting. Likewise, the word forms thanks and its (in its non-possessive form)

in an informal sentence would be typically converted to thank you and it is in a formal setting.

To conclude, we have discussed here how two of our three enhacements generalize to any

style transfer setting, while the third one generalizes to a speci�c, though signi�cant subset.

Note that we de�ned style transfer very broadly — as a collection of non-textual subgoals that

are achieved by means of modifying a given source text/input to match a certain target style

where those subgoals are optimal. Hence, our �ndings relevance encompasses many popu-

lar and widely applicable NLP tasks, such as text normalization [8], domain adaptation, text

simpli�cation [26], expertise style transfer [24] amongst others.
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Chapter 4

Tongue Twister Generation

(Proposed)

[New Task]

4.1 Introduction

Tongue twisters are sentences which are �uent besides being di�cult to pronounce e.g., "She

sells seashells on the seashore.”, "What’s a synonym for cinnamon.” etc.

Through our chapter on portmanteau generation (Chap. 2), we already made a foray into

creative NLG tasks whose communicative goal signi�cantly focusses on the lexico-phonetic as-

pect of surface realization . However, since the task setting of portmanteau generation required

constructing the portmanteau given two root word types, rather than tokens in speci�c sen-

tential contexts, it did not require consideration of higher-granularity aspects such as �uency

and semantic meaningfulness. Generating a tongue twister, however, requires

1. Maintaining di�culty of pronunciation, which is a token and phrase-level subgoal related

to the lexico-phonetic subskill of the wider skill of surface realization. Note that even the

lexico-phonetic subgoal alone is more challenging to ful�ll than the one we had to in

portmanteau generation during Chapter 2. In that chapter, the phonetic subgoal was

restricted to a single word type i.e., the generated portmanteau had to sound word-like

and reminiscent of its two root word types. However, maintaining a high di�culty of

pronouncing the sentence at most points throughout, requires generating a sequence

of word forms that are each hard to pronounce in-context. This requires managing the
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lexico-phonetic aspect not just at the word level but also at the level of phrases/local word

contexts.

2. Maintaining �uency, that is a subgoal at both the phrase and sentence levels. A sentence

is �uent if it sounds natural to a native speaker of that language. Fluent sentences must

be both grammatical as well as meaningful and can’t merely satisfy just one of the two

conditions i.e, “Colorless green ideas sleep furiously." and “Milk I fetch but grow hot milk

cold." are both not �uent.

Hence, the importance of tongue twister generation from the purview of our thesis and its

objectives is that it is a creative NLG task with the rare property that it requires jointly satisfying

a blend of higher-granularity, phrase and utterance-level communicative subgoal (i.e.,semantic

meaningfulness and �uency) and a lower-granularity, lexico-phonetic communicative subgoal

(i.e., di�culty of pronunciation).

4.2 Background

Historically, along with riddles, rhymes, fables and other such creative artifacts, tongue twisters

have often been employed as a vehicle for early transmission of native language diction, gram-

mar and vocabulary to children, through e.g., parent-child interactions, playtime activities and

kindergarten instruction [2, 129]. Tongue twisters have also been employed as experimental

aides for research studies of speech production in cognitive science and related disciplines,

both amongst healthy speakers and those with speech and auditory disorders such as dysarthia

[87]. They are also used as pedagogic aides in speech therapy and treatment of speech disorders

as well as psychological disorders relating to public speaking and elocution [190]. Lastly, they

�nd use as pedagogic aides both in teaching English pronunciation and diction in EFL (English

as a Foreign Language) instructional settings [167].

Tongue twisters are not merely a phenomenon limited to English, and are found across most

major languages and cultures e.g., French (“Cinq chiens chassent six chats."), Hindi (“Chandu ke

chacha ne Chandu ki chachi ko chandi ke chamche se chutney chatai.") inter alia.

Despite their global footprint, the set of well-known and accepted tongue twisters in each

language tend to be rather small in number, numbering in the few thousands, and novel tongue

twisters are either seldom coined or often fail to achieve su�ciently widespread circulation

amongst the corresponding population of language speakers. Based on our examination of

English resources online, there do not exist more than 2–3K tongue twisters ever coined and
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widely circulated amongst English speakers. Though one can certainly construct a good num-

ber of these with some amount of individual skill and e�ort, then getting these to be widely

accepted is likely to be an uphill and non-trivial task.

4.2.1 Distinction from poetry

Tongue twisters are distinct from poetry, in that the phonetic subgoal tongue twisters must

satify is of a markedly di�erent nature than the ones poems have to, in the ways laid out below

1. Amorphously De�ned Subgoal: Poetry (or atleast its traditional, non-freestyle form)

is de�ned through a set of explicit, well-de�ned subgoals on rhyme and rhythm e.g.,

rhyming schemes such as ABAB specify how each sequence of 4 lines should align in

terms of their last words. This also makes it easy to evaluate how much a generated

poem adheres to the constraints. In contrast, ”being di�cult to pronounce" is an implicit

subgoal that is much harder to evaluate.

2. Negative Subgoal: Subgoals such as being �uent, or satisfying a 4-line rhyming scheme

can be characterized as “positive" in the sense that they require scoring highly as per

some estimator, be it a language model for �uency, or the fraction of couplets for which

the scheme is satis�ed for rhyming scheme. On the other hand, “di�cult to pronounce" is

a negative notion that can be characterized in terms of scoring lower as per some model-

based estimator which scores “typical" or expected pronunciation.

4.3 Representational Primitives

Devising a model architecture which ful�lls both the subgoals (di�culty of pronunciation and

�uency) with disparate granularities requires two submodels - each operating in the phonetic

and word/subword level representation space. For the submodel of di�culty of prononuncia-

tion, we employ a representation space P∗, where P is a set of phonetic symbols and * rep-

resents the Kleene closure. Likewise, for the submodel concerned with �uency, we employ a

representation space W∗, where W is the set of words/subwords in the English language as

estimated from a su�ciently large corpus.

Speci�cally, we choose the IPA (International Phonetic Alphabet) [7] for this purpose.
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4.4 Dataset

We curate a dataset
1

of ≈650 tongue twisters from a wide range of sources, both historical and

recent. Through manual examination, we exclude the small number of tongue twisters based

on meaningless repetition of 2-3 words e.g., “red blood, blue blood", retaining only the proper,

full-sentence tongue twisters.

4.5 Conclusion

1https://github.com/vgtomahawk/TT_NLP/blob/master/Data/dataset.txt
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Part II

Microplanning
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Chapter 5

Improving Realization Level Metric

Evaluation of Open Dialog via

Microplanning Rollouts for Reference

Augmentation

(Findings of ACL 2021)
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[Evaluation][Knowledge]

There has been increasing recognition

that context is of overwhelming

importance in the interpretation of text.

Implicit real world knowledge is often

applied by the understander, and this

knowledge can be very highly

structured. The appropriate ingredients

for extracting the meaning of a sentence,

therefore, are nowhere to be found in the

sentence itself.

R.Schank and P.Abelson, Scripts, Plans,

Goals and Understanding: An Inquiry Into

Human Knowledge (1972)

Multiple di�erent responses are often plausible for a given open domain dialog context.

Prior work has shown the importance of having multiple valid reference responses for mean-

ingful and robust automated dialog evaluation. In such cases, the common practice has been to

collect more human written references. However, such collection can be expensive, time con-

suming, and not easily scalable. In this chapter, we show an entirely alternative route to improve

automated evaluation and make it conform closer to human evaluation, sans any additional an-

notation. We devise SCARCE, a novel suite of techniques for automatically expanding a small

set of human reference and its dialog context to a larger set of pseudo-references.

A dialog context, which consists of a few �nite turns of conversation before the model

response or either of the references, maybe thought of a partial microplan, or a microplan-in-

action in the process of generating an entire dialog.

Automatic evaluation metrics, such as BLEU [151], METEOR [12] and BERTScore [253]

compare the response to each of the references merely at the surface level, using some measure

of symbolic n-gram overlap, or pairwise vector similarities. Hence, they are agnostic to the

available dialog context information and cannot leverage it while evaluating. However, if we

had access to a knowledge source that can project/predict out another turn of multiple, explicit,

plausible responses from the dialog context, we can use these explicit responses as “pseudo-
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references". Note that these responses need not be fully �eshed out, and could even simply

be terse inferences about the situation or the world state. We merely need a small amount of

heuristic, adaptive post-processing (see §5.2.2, for instance) to convert them to conversation-

like responses. For example, if the context consists of John saying “I went to meet my mother", a

plausible inference returned by a commonsense knowledge base such as COMET [18] could be

"Mother feels happy". This can be easily adapted using a rule-based heuristic to more conversa-

tional response like surface forms e.g., “Did your mother feel happy?" , “Was your mother feeling

happy?" etc. The process of fetching these pseudo-references can be thought of as multiple

rollouts or forward samples of the partial microplan, represented here by the dialog context,

with the “rolling out" / “sampling" being done implicitly by our knowledge source.

More speci�cally, we fetch plausible “pseudo-references" from knowledge sources, and adapt

them so that they are more �uent in context of the dialog instance in question. In terms of

knowledge sources, we use (1) a commonsense knowledge base to elicit a large number of

plausible reactions given the dialog history (2) relevant instances retrieved from dialog corpus,

using similar past as well as future contexts. We demonstrate that our automatically expanded

reference sets lead to large improvements in correlations of automated metrics with human

ratings of system outputs for dialog contexts from the DailyDialog dataset [107].

5.1 Introduction

Evaluation by human annotators perhaps give the best insights into quality of machine gen-

erated natural language outputs. However, such evaluation can be expensive and time con-

suming. This makes it impractical to use this during model development, where one may be

experimenting with and comparing 100s of hyperparameter con�gurations. This is because

using evaluation by human annotators at this stage would entail hundred-fold the cost of just

doing this evaluation at test time, both in terms of time and money. Even before getting to the

hyperparameter tuning stage, one needs some form of evaluation to sanity check implementa-

tions of new model variants as well as replicated native implementations of existing methods.

Depending on the complexity of the model architectures and the developer’s skills, this can

take tens to hundreds of iterations depending on the bugs encountered along the way. Again,

we cannot rely on human annotator evaluation for this purpose on account of the prohibitive

cost.

Much focus has therefore been on automated evaluation methods that correlate with human

evaluations. Automated metrics such as BLEU [151] work well for tasks such as machine trans-
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Figure 5.1: We devise automatic ways to collect references sans any crowd-sourcing, through two types

of knowledge sources: commonsense and retrieved instance knowledge, followed by automated adapta-

tion to make them more �uent in the target contexts.

lation, but often correlate poorly with human ratings in tasks such as open domain dialog that

admit a wide variety of valid response for given context, often due to small number of human

written references [199, 256]. Prior work [69, 223] has demonstrated that having multiple valid

references for the same context leads to automated metrics being better correlated to human

judgements for appropriateness. However, collecting human written responses is di�cult to

scale, can be costly, and it can be di�cult to cover a large variety of correct responses [25].

In this chapter, we automatically extract a large number of diverse references to be used

with such reference-based metrics, without resorting to expensive crowd-sourcing. Intuitively,

since open-domain dialog pertains to everyday life, its utterance text tends to re-instantiate

from a large but limited pool of situations [203] e.g., friends debating politics etc, with variation

only on some details e.g. country discussed. Hence, knowledge encapsulating a wide scope of

situations can serve as one starting point to automatically seed a set of diverse references.

We �rst fetch plausible candidates from two types of knowledge sources (Figure 5.1). Such

knowledge sources provide ready and easy access to a large number of potentially appropriate

and diverse references. However, all retrieved instances may not be directly useful. As such, to

achieve more �uent references, we devise techniques to adapt the candidate references based

on the context (e.g. change country being discussed). Note that since we are interested in

creating references for only evaluating appropriateness of system outputs, our techniques can

rely on broader data sources compared to dialog models. For example, we use future context

and human written reference for retrieval, while a dialog model cannot.

Our contributions are as follows: (1) We devise a method for automated reference set aug-

mentation for automated dialog evaluation. Compared to collecting more human-written re-

sponses, our approach is inexpensive and scalable, and fetches a diverse set of references. (2)

We observe high correlations of various automated metrics with human ratings when devised
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reference augmentation is applied to the test split of DailyDialog dataset [107]. We additionally

observe that paraphrasing, a popular data augmentation technique, performs much worse. (3)

We employ novel use of commonsense knowledge and dialog corpus instances, and unsuper-

vised techniques for adapting retrieved references into more �uent forms.

5.2 Method

Figure 5.1 shows an overview of our devised methodology. We �rst fetch plausible candi-

dates from two types of knowledge sources. Thereafter, the retrieved candidate references are

adapted so that they are �uent in the target context. We refer to our devised method as Scarce

( SCalable Automated Reference Construction for Evaluation).

5.2.1 Knowledge Sources

Pre-trained Commonsense Model Much open domain dialog is based on everyday matters.

We posit that extracting inferences about a situation using a commonsense knowledge base

could be useful in identifying a wide variety of plausible reactions for a given dialog context.

For example, a person making arrangements for an event might receive thanks from others

(Figure 5.1). We utilize COMET [18] an o�-the-shelf commonsense knowledge model built on

ATOMIC [200] or ConceptNet [220] corpus. It can be used to elicit commonsense inferences.

Traditional commonsense knowledge bases are labelled, directed graphs consisting of nodes

which are short phrases describing the associated entities or concepts, e.g. President of the

U.S.A, gamekeeper, shock infantry, blitzkrieg etc. Consider a pair of nodes u and v. A labelled,

directed edge {u, v, r} from u to v indicates that v is a possible attribute value for node u given a

relation r. For example, {gamekeeper, IsA, profession} and {gamekeeper, InteractWith, animals}
would be labelled, directed edges, indicating that gamekeeper is a type of profession and that

a gamekeeper has to typically interact with animals. A problem faced by traditional com-

monsense knowledge bases is the low coverage in terms of being able to handle variation in

phrasing of query concepts and relations e.g. on being queried with the concept-relation tuple

{qu = zookeeper, qr = HasToDealWith}, if an explicit concept node u = zookeeper does not

exist in the KB graph, it has to be matched to u = gamekeeper using some heuristic in order

to return a non-empty result. Assuming this matching is done correctly, a further round of

matching has to be done in case the relation r = HasToDealWith does not directly exist, having

to match it with r = InteractWith. In the event that both qu and qr both don’t exist, getting
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a non-empty result is hence contignent on the matching heuristic getting these two matching

steps right. One can see how designing such matching heuristics could be tricky, and even if

reasonably well-functioning, they would always have some failure cases.

Speci�cally, COMET is a left-to-right, large, pretrained language model, speci�cally GPT-2

[170], which is further �netuned on a constructed training split where every edge of a static,

traditional commonsense knowledge graph is converted to a training example. This allows the

model to not only memorize the original knowledge base, but also generalize to newly phrased

concepts and relations at test time. COMET is queried in mostly the same way as one would

the original KB it was trained on, the only di�erence being that instead of a graph lookup, we

feed in the query to the model in the form of a tag-structured prompt x.qu < SEP > o.qr

COMET-ATOMIC provides inferences on cause-e�ect interrelations between events per-

taining to nine relation types such as oReact (e�ect on others due to the event), oWant (infer-

ences about wants of the receiver of event), etc. The pre�x ‘x’ indicates an e�ect or cause on

the actor, and ‘o’ denotes the same on others. Given an utterance from the previous speaker, we

draw up to 5 inferences pertaining to each of oE�ect, oReact, and oWant relation types to con-

struct plausible references for the target response. For example, for an utterance ‘I will make

the arrangements. It will be great.’, one of the inferences corresponding to oE�ect is ‘feel ex-

cited’, depicting a plausible state of the next dialog speaker. However, such outputs are typically

phrases, and we discuss transformation to �uent sentences in Section 5.2.2. Similarly, we use

inferences pertaining to ‘CausesDesire’ and ‘HasFirstSubevent’ relation types from COMET-

ConceptNet.

Dialog Corpus Retrieval For a test dialog context under consideration, one is likely to �nd

similar contexts occurring in some of the training dialogs, given a su�ciently well-sized corpus

training split. Using retrieval, we can identify such contexts and use their responses as pseudo-

references for the test-time response. Our approach is related to Galley et al. [58], who propose

the ∆-BLEU measure which uses retrieval to produce pseudo-references. However, unlike our

method, they require annotator qualityx scores to weigh them during evaluation. Moreover,

though we utilize retrieval here for evaluation, methods of this kind have found success in

many generation setups as well. [90, 106, 155].
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Spearman Rank Correlation / Kendall Tau Rank Correlation

Setup 1 human written reference 4 human written references

Dataset Single Paraphrase Scarce Multi Paraphrase Scarce

[107] -Single -Single(Ours) [69] -Multi -Multi(Ours)

BLEU4 0.09 / 0.07 0.13 / 0.09 0.30 / 0.21 0.28 / 0.20 0.27 / 0.19 0.36 / 0.25

BLEU3 0.06 / 0.04 0.11 / 0.07 0.29 / 0.20 0.24 / 0.17 0.24 / 0.17 0.35 / 0.24

BLEU2 0.04 / 0.03 0.08 / 0.06 0.28 / 0.19 0.20 / 0.14 0.21 / 0.14 0.33 / 0.23

BLEU1 0.02 / 0.02 0.06 / 0.04 0.25 / 0.17 0.19 / 0.13 0.18 / 0.12 0.29 / 0.21

ROUGE-L 0.07 / 0.05 0.09 / 0.06 0.26 / 0.18 0.20 / 0.14 0.20 / 0.14 0.32 / 0.22

METEOR 0.11 / 0.07 0.09 / 0.06 0.24 / 0.17 0.23 / 0.16 0.22 / 0.15 0.30 / 0.21

EmbeddingAvg 0.03 / 0.02 0.02 / 0.01 0.02 / 0.02 0.10 / 0.07 0.10 / 0.07 0.08 / 0.05

SkipThought -0.00 / 0.00 -0.03 / -0.02 0.09 / 0.07 0.07 / 0.05 0.05 / 0.04 0.13 / 0.10

BERT-Prec 0.27 / 0.19 0.28 / 0.19 0.38 / 0.26 0.32 / 0.22 0.32 / 0.22 0.41 / 0.28

BERT-Rec 0.10 / 0.06 0.09 / 0.06 0.24 / 0.16 0.23 / 0.16 0.21 / 0.15 0.30 / 0.21

Max. value 0.27 / 0.19 0.28 / 0.19 0.38 / 0.26 0.32 / 0.22 0.32 / 0.22 0.41 / 0.28

Table 5.1: Utterance level Spearman Rank Correlation [219] and Kendall Tau Rank Correlations [88].

(1) Scarce-Single augments the original single human written response (Single) in DailyDialog dataset

[107] using the devised method. It leads to large improvements in correlations across most of the metrics,

when compared to Single. (2) Scarce-Multi augments the Multi dataset, again leading to improve-

ments in correlations to human ratings, especially for BLEU and BERT-Prec metrics.

5.2.2 Context Adaptation

We note that commonsense knowledge outputs are often incomplete sentences, and we use

simple templates to convert them to �uent sentences e.g. ‘feels excited’ gets transformed to ‘i

feel excited’. (Detailed templates in §5.8.1).

Further, we note that references from knowledge sources are sometimes not completely ad-

equate for the target context. For example, ‘event’ in the retrieved reference shown in Figure

5.1 can be updated to ‘party’ to construct a more apt reference. To adapt the retrieved text

to better �t the target context we use employ an unsupervised decoding procedure, based on

the approach of Qin et al. [168], that uses gradient ascent to search for output text that maxi-

mizes (1) �uency with the left context (approximated by the likelihood of the output text under

a pretrained GPT-2 model) and (2) similarity to the original text from the knowledge source

(approximated by the likelihood of the original text under the output text’s token-level word

distributions). The method utilizes a heuristic update procedure to iteratively re�ne a di�eren-

tiable proxy for the output text (a sequence token-level word distributions), while keeping the

model parameters �xed. More details can be found in Qin et al. [168] and in §5.8.2.
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5.3 Experiments

We investigate the extent to which automated metrics on an evaluation dataset correlate with

human ratings of system outputs. We use the human ratings collected by Gupta et al. [69], who

collected utterance level human ratings using Amazon Mechanical Turk (AMT). They used a

collection of 100 dialogue contexts that are randomly selected from the DailyDialog dataset.

The generated responses from various methods are rated in terms of appropriateness (from 1-

5) by 5 di�erent AMT workers. They collected and considered outputs from following methods:

CVAE [255], HRED [210], Seq2Seq [230], Dual-encoder [119], and Human-written responses.

We report Spearman rank correlation and Kendall tau rank correlation of human ratings against

ngram overlap metrics such as BLEU [151], METEOR [12], ROUGE-L [111], and embedding

based metrics like cosine similarity of average word embedding (EmbAvgSim) [240] or Skip

Thought Embedding [94], and BertScore [254] ( BERT-Prec,BERT-Rec).

We compare the correlations across following setups: Single [107]: Original DailyDia-

log dataset that had one reference per context; Scarce-Single: Proposed method along with

Single reference; Multi [69]: Upto 5 human written references. Scarce-Multi: Reference

responses from the devised method along with Multi references. Additionally, we report the

results when using Paraphrase instead of Scarce: Paraphrase-Single and Paraphrase-

Multi. Paraphrasing is a popular approach for automated data augmentation. Paraphrasing

via backtranslation (BT) [208] is known to be an e�ective, domain-independent way to generate

good quality paraphrases [239]. We use the BT model from [244] with its default hyperparam-

eters to sample multiple paraphrases per human written reference.

Results: We observe that most of the metrics show large improvements in correlations to hu-

man ratings for appropriateness when used along with Single or Multi (Table 5.1). In fact, rank

correlations across most of the metrics are better for Scarce-Single compared to Multi, even

though former uses only single human written reference while latter uses upto 5 human writ-

ten references
1
. Additionally, we observe that Paraphrase produces little or no improvements

in correlations with human ratings (Table 5.1). We posit that for a given response, alternate

responses constitute a strictly richer subspace than that of response paraphrases, that tend to

be lexico-syntactically variant but semantically invariant.

1
Rank correlations for Single and Multi deviate from the values in Gupta et al. [69], who (in private com-

munication with us), con�rmed that the �nal dataset and code available on their repo does lead to the numbers

we report.
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Method BLEU4 BERT-Prec

Scarce-Single 0.30 0.38

Scarce-Single variants:

CommonSense only 0.24 0.31
Retrieval only 0.29 0.36
Retrieval only (5% corpus) 0.17 0.28
w/o context-adapt 0.26 0.37

Table 5.2: Analyzing impact of various components

Analyzing impact of various components: To understand the impact of various compo-

nents, we report BLEU-4 and BERT-Prec scores with some variants of Scarce-Single (Table

5.2). We note that even considering only one knowledge source (CommonSense-only, Re-

trieval-only) leads to good Spearman rank correlations of automated metrics to human rat-

ings. Thus, the additive e�ect (Scarce-Single) shows rather small incremental bene�t. More-

over, Retrieval by itself does better than CommonSense, though at smaller corpus availability

(e.g. 5%), CommonSense performs better. Finally, not using context adaptation (w/o context-

adapt) leads to signi�cant performance drop.

Quality of Auto-generated References: We check the quality of Scarce references by re-

cruiting human annotators, showing them the reference along with the dialog context, and

requesting them to tag each reference as appropriate, neutral, or not-appropriate. We ran-

domly select 110 responses each from Scarce and Multi. We observe that in aggregate, 15%

of the references from Scarce (fully automatically generated) were annotated as not appropri-

ate, compared to 7% for Multi (Details in §5.11.1).

Evaluation with a Second Dataset: The human ratings dataset from Gupta et al. [69] does

not include outputs from some recent models such as Transfertransfo [243], which is a GPT-2

model �ne-tuned on DailyDialog. We collect additional pairwise human preference ratings for

135 test instances with where one of the responses is from the Transfertransfo model, and the

other one is from Seq2Seq or HRED (Seq2Seq and HRED had best overall human ratings). Each

response was tagged by 3 annotators using Amazon Mechanical Turk, and we pick the majority

rating. Kendall Tau rank correlation for Bleu4 for Single, Scarce-Single and Multi are 0.03,

0.31 and 0.17, while for BERT-Prec are 0.11, 0.11, and−0.03 respectively. Thus, Scarce-Single

again performs similar or better than Single and Multi.
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5.4 Discussion

Transferability to more languages: Transferability of our approach to more languages is

one aspect that merits discussion. While commonsense resources aren’t readily available in

all languages, a workaround can be to use o�-the-shelf MT to translate before querying into

English versions of the commonsense resources, and then translate back retrieved information.

Furthermore, we note that while commonsense knowledge was useful, removing the Common-

sense method and relying on retrieval alone causes only relatively modest drop in performance

(see Table 5.2). Thus, for languages lacking commonsense resources, one may still attain good

gains in reference based evaluation by retrieving and adapting from dialog corpus alone.

Reference-lessmetrics: We note that while comparisons of using the devised approach against

using reference-free metrics [120, 226] would be interesting, the focus of the current chapter

is on improving reference-based evaluation via unsupervised reference augmentation. While

reference-less metrics o�er convenience to work with zero or a very small number of references,

reference-based metrics can be advantageous on several fronts. Reference-based evaluation can

be more interpretable under certain situations by identifying the reference that matches the

most with a given system output. Reference-based evaluations allow for easy incorporation of

additional references — in contrast, many learned model-based metrics will require retraining

if additional annotations become available.

5.5 Related Work

Prior work explores many ways to improve over single-reference evaluation without collecting

multiple ones. Fomicheva et al. [55] obviate need for multiple references in MT by generating

many “alt-hypotheses" via test-time dropout from the same model. Sai et al. [198] and Gupta

et al. [69] collect additional manually annotated responses for dialog contexts. Compare to

them, our method of automatically collecting additional references automatically is more scal-

able.

Automatic data augmentation in NLP has largely been used for increasing training data [51,

52, 235]. In this chapter, we use retrieved dialog instances and commonsense knowledge base to

augment reference set for a given dialog context. ∆-Bleu [58] and uBLEU [249] also use retrieval

to produce pseudo-references for dialog response evaluation. Compared to ∆-Bleu and uBLEU,

our work is di�erent since we utilize commonsense knowledge base and perform contextual
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adaptation. Prior work in dialog response generation has explored the use of commonsense

knowledge base [125] as well as retrieval [126, 218] – in contrast, our focus is on augmenting

reference set for improving evaluation.

Automatic model-based metrics like ADEM [120] and RUBER [226], that incorporate con-

text while scoring for evaluation, at �rst glance seem to reduce the need for multiple refer-

ences. However, these metrics have been found to su�er from several peculiar problems. For

instance, ADEM can’t discriminate between gold responses and certain classes of adversarial

negatives e.g. reversed gold responses and repeating the context as the response [197]. Sato

et al. [202] evaluate dialog systems through their ability at selecting valid responses from a

semi-automatically curated candidate list. Mehri and Eskenazi [133] introduce the unsuper-

vised, reference-free USR metric, that leverages a suite of RoBERTa [118] models, each �ne-

tuned to score one of �ve dialog aspects e.g. Natural and Uses Knowledge. Mehri and Eskenazi

[132] further expand their USR metric to eighteen aspects from the initial �ve.

5.6 Conclusion

In this chapter, through our approach named SCARCE, we demonstrate how knowledge sources

can be used in an automated and scalable manner to construct a diverse set of pseudo-references,

starting with an initial set of human references and their dialog context. These pseudo-references

can then be used along with the original human references to form a larger,augmented reference

set.

The resulting reference set demonstrates higher correlation with human ratings of system

outputs compared to the original reference set, across multiple models as well as several auto-

matic evaluation metrics such as BLEU, METEOR and BERTScore.

Our approach was based on the intuition of the dialog context as an evolving microplan

towards the complete dialog, with each of the human references as well as the model response

representing one-step extensions. We noted that automated evaluation metrics, that only com-

pare the realizations, cannot by themselves e�ectively use the dialog context. However, they

can e�ectively use the context if an explicit, additional set of plausible one-step extensions or

“rollouts" of the microplan, that serve as pseudo-references, are added to the reference set. Our

approach also showed two knowledge sources that can e�ectively generate such extensions

after a small amount of post-adaptation (see 5.2.2), namely the commonsense KB COMET and

retrieved examples from the same corpus.

Our experiments con�rm the e�cacy of our method, not only outperforming the origi-
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nal reference set but also its lexico-syntactically paraphrased expansion. This underscores the

intuition that generating semantically diverse and novel extensions of the dialog context “mi-

croplan" in the manner we devise is critical to improving correlation with human judgements.

In future, we plan to incorporate other commonsense types into Scarce, such as social [201]

and moral [56]. We also hope to explore human-in-the-loop setups which build on Scarce to

collect even better references.

Broader Takeaways

The �rst broad takeaway from this chapter is that when performing reference-based, automatic

evaluation of a NLG model, the exact quality of each individual reference need not be very high

and match the level of a human authored reference. Consider the situation where the reference

set keeps improving on atleast one and maintains a reasonable level of the other, amongst the

two factors of:

• Mean quality

• Diversity su�cient to be representative of the distribution of possible responses

Under such circumstances, the reference-based evaluation can potentially continue to improve

in terms of correlation with human evaluation, depending on the expansion strategy being used.

Whether it actually improves depends on the speci�cs of the task under consideration, and the

reference set expansion strategy employed. For instance, in this chapter, we saw earlier how

Scarce gave considerable improvements in correlation with human ratings, while Paraphrase

, since the latter’s merely lexico-syntactic variation failed to provide any marginal bene�t.

The second broad takeaway is that, for text-to-text NLG tasks such as dialog, summariza-

tion and prompt-based story generation, it is potentially useful to devise ways of involving the

textual input in the reference-based automatic evaluation process, which typically only com-

pares the reference to the response, i.e the NLG model’s output, and that too often at the surface

level, given the way most popular metrics such as BLEU [151] and BERTScore [253] . This is

especially true, as we in this chapter, for tasks such as dialog and prompt-based story gen-

eration, where the subspace of correct responses (outputs) given the context (input) is large.

While purely reference-based evaluation which doesn’t take the input into account is forced to

rely on gold standard information at the surface-realization level alone, evaluation strategies

which use the input can e�ectively use information at the micro-planning level, by virtue of

conditioning on the input. This can be done either by explicitly predicting out alternative gold
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surface realizations continuing the microplan starting with the input (as we did in this chapter),

or by implicitly conditioning on the input and representing it better in the evaluation process.

The third takeaway from our chapter is that it underscores the continued relevance of

reference-based metrics, notwithstanding the emergence of referenceless, model-based met-

rics such as ADEM [120] and RUBER [226]. Though ostensibly referenceless and hence free

from the variance caused by reference quality, the models underlying these metrics are often

tied into speci�c notions of denoising, or trained by learning to discriminate between references

and suites of outputs from models which are state-of-the-art only at the time of publication of

the metric. As NLG models improve, the score returned by such metrics can become less dis-

criminative over time, unable to distinguish between the multiple new candidate models under

consideration which might all be considerably better than the now-erstwhile SOTA models used

to learn the scoring function. Reference-based automatic evaluation is free of these concerns,

and if its primary disadvantage of annotator cost is su�ciently alleviated through reference

set expansion strategies like Scarce, it can continue to remain a competitive alternative, or a

useful companion, to evaluation using referenceless metrics.

5.7 Additional Results

5.7.1 Additional Correlation Results

Table 5.3 shows Spearman rank correlation scores with p-values.

5.7.2 Quality Assessment based on RUBER

As a second, automated way of ascertaining response quality, we use the unreferenced part of

the RUBER metric [226], that uses a pretrained model to score quality of responses based on

context alone. Here, we use the RUBER checkpoint
2

from [198], that �rst pretrains on a large

Reddit dataset, followed by �netuning on DailyDialog. Single and Multi have a quality of ≈
0.72, while for Retrieval the values is 0.63 . CommonSense is found to have the most superior

quality at 0.82, surpassing even MULTI.

2tinyurl.com/ynqd54tt
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Spearman Rank Correlation (p-values)

Setup 1 human written reference 4 human written references

Dataset Single Paraphrase Scarce Multi Paraphrase Scarce

[107] -Single -Single(Ours) [69] -Multi -Multi(Ours)

BLEU-4 0.093 (0.04) 0.135 (0.00) 0.302 (0.00) 0.281 (0.00) 0.269 (0.00) 0.357 (0.00)

BLEU-3 0.055 (0.22) 0.105 (0.02) 0.291 (0.00) 0.243 (0.00) 0.238 (0.00) 0.345 (0.00)

BLEU-2 0.040 (0.37) 0.082 (0.07) 0.275 (0.00) 0.203 (0.00) 0.206 (0.00) 0.327 (0.00)

BLEU-1 0.024 (0.59) 0.062 (0.17) 0.250 (0.00) 0.191 (0.00) 0.178 (0.00) 0.295 (0.00)

ROUGE-L 0.071 (0.11) 0.088 (0.05) 0.259 (0.00) 0.197 (0.00) 0.196 (0.00) 0.317 (0.00)

METEOR 0.106 (0.02) 0.094 (0.04) 0.243 (0.00) 0.227 (0.00) 0.217 (0.00) 0.299 (0.00)

EmbeddingAvg 0.030 (0.50) 0.015 (0.73) 0.025 (0.58) 0.099 (0.03) 0.096 (0.03) 0.079 (0.08)

SkipThought -0.003 (0.95) -0.033 (0.46) 0.087 (0.05) 0.065 (0.15) 0.053 (0.24) 0.129 (0.00)

BERT-Prec 0.270 (0.00) 0.279 (0.00) 0.378 (0.00) 0.319 (0.00) 0.322 (0.00) 0.407 (0.00)

BERT-Rec 0.096 (0.03) 0.094 (0.04) 0.240 (0.00) 0.232 (0.00) 0.212 (0.00) 0.304 (0.00)

Max. value 0.270 0.279 0.378 0.319 0.322 0.407

Table 5.3: Utterance level Spearman Rank Correlation [219] with p-values. (1) Scarce-Single aug-

ments the original single human written response (Single) in DailyDialog dataset [107] using the de-

vised method. It leads to large improvements in correlations across most of the metrics, when compared

to Single. (2) Scarce-Multi augments the Multi dataset, again leading to improvements in correla-

tions to human ratings, especially for BLEU and BERT-Prec metrics. Additionally, we note that almost

all of the correlation values with Scarce-Multi are statistically signi�cant with p < 0.05.

5.7.3 Diversity of References

We investigate the diversity of the references by computing self-BLEU scores [257] among ref-

erences from Paraphrase vs Scarce. For fair comparison, we randomly chose 4 references

from corresponding method. We observe self-BLEU4 scores of 0.36 for Paraphrase compared

to only 0.133
for Scarce.

5.8 Additional Details on Context Adaptation

5.8.1 Templates to convert Knowledge Base Outputs to Full Sentences

Table 5.4 lists the set of templates and rules used to transform semi-structured COMET outputs

to surface natural language forms.

3
Note that lower self-BLEU denotes more diverse
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Condition Action

Type is oEffect Prepend ‘I feel’

Example:

oEffect (excited) => ‘I feel excited.’

Type is oWant Prepend ‘I’

Example:

oWant (to thank personx) => ‘I want to thank personx.’

Type is oReact Prepend ‘I will’

Example:

oReact (have a party) => ‘I will have a party.’

Word personx Replace with ‘you’

Example:

i thank personx. => ‘I thank you.’

Table 5.4: Templates and rules to transform semi-structured COMET outputs to surface NL

forms.

5.8.2 Unsupervised Decoding Procedure For Context Adaptation

We use the author’s own implementation
4

of their DELOREAN decoding algorithm from [168].

We use default hyperparameters from their implementation, that use the non-�netuned gpt2-

medium checkpoint as the LM atop which the unsupervised, gradient-based decoding procedure

is run. Note that the model parameters are not updated in any way - the gradient computation

and updates here are happening w.r.t the states, or more speci�cally, the state activation. More

speci�cally, authors devise an iterative procedure wherein they alternatively perform forward

and backward passes. In the forward pass, the current output Y is updated as per the likelihood

of the underlying decoder. In the backward pass, the output is updated to be as similar as

possible to the sentence Z from the knowledge source using back-propagation. However, since

Y is discrete, we maintain a soft representation Ỹ of the output Y wherein Ỹi represents the

logits at the ith position as per the underlying decoder. Next, we shall describe the backward

and forward passes of the iterative procedure:

1: In backward pass, we update logits based on the gradients of a content-matching loss

function OỸL(Ỹt−1, Z) giving backward logits ỹbt

2: Next, we perform forward pass using the underlying decoder for steps 1 to N . During

forward pass at step t, we compute the logits ỹft based on left context i.e. X and Y<t. Next we

perform weighted averaging of the forward and backward logits at step t to arrive at the �nal

logits to be used for the next time step in forward pass.

4tinyurl.com/2lqp9z6s
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Ỹi is initialized by performing a forward pass conditioned only on X as per greedy decod-

ing. We alternatively perform backward and forward passes till convergence. Final response is

obtained via the resulting logit outputs Ỹ .

Speci�cally, we use their “counterfactual” setup, where an ending eold is adapted from its

old context cold to an altered, new context cnew, generating a new, predicted ending ênew. In our

case, cnew is the dialog context for the turn under evaluation dpastt . In the Retrieval case, cold

is the context of the retrieved candidate turn xpastt′ . For the Commonsense case, cold is also our

current context, i.e the same as cnew - we’re simply attuning the already drawn inference better

to the current context.

5.9 Retrieval Similarity Function - Details

Consider a dialog d , broken up by turns as {C1 . . . Ct, Ct+1=d
resp
t , Ct+2 . . . CT}, where t + 1

denotes the turn currently under evaluation. For the context-response C1
t , r̂t pair to be evalu-

ated, we retrieve pseudo-references based on a combination of a) Past dpastt = Ct−Lb
t b) Gold

response drespt c) Future dfuturet = Ct+2
t+2+Lf

. Lb and Lf are past and future context windows.

Our retrieval similarity function is a sum of the log scores between each corresponding element

of the turn under evaluation with the candidate turn.

Sim(dt, xt′ ) = log Sbm25(d
past
t , x

past

t′ ) + log Sbm25(d
resp
t , x

resp

t′ )

+ log Sbm25(d
future
t , x

future

t′ )

We setLb = Lf = 2 without speci�c tuning, as an intuitive tradeo� between enough speci�city

and enough possibility of relevant candidates.

BM25 [191] or “Best Match 25” is a t�df like similarity. Its speci�c form is:

SBM25(q, d) =
∑

wi∈q

log(
N

dfi

)
(k1 + 1)tfi

k1((1− b) + b dl
avdl

) + tfi

Here, tf i and dfi are the term frequency in the current document and the document frequency

(in the corpus). N is corpus size, while dl and avdl are current and average document lengths.

b controls extent of document length normalization, while k1 controls e�ect of term frequency.

With b = 0 and k1 → ∞, this reduces to simple t�df . Here, we use default gensim values,

b = 0.7, k1 = 0.5
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5.10 Qualitative Examples

In Tables 5.5, we list some examples, each illustrating a turn of a test dialog with its immediate

past, future, the four additional human references from [69] (shown under Multi 2,3 and Multi

4,5), followed by automated response sets from di�erent sub-components of Scarce.

5.10.1 Before/After ContextAdapt

In Example 4-4 of Table 5.5, we can observe how “Yes , I’m young , and unmarried . It’s no problem

for me to travel frequently .” gets context-adapted (shown as +CA, short for ContextAdapt)

to “Yes , I’m able to understand English. It ’s not that I don’t understand English .” that indeed

does match the preceding dialog better. Similarly, in Example 50-2 of Table 5.5, we can see

how “Well, that might be acceptable if you handle insurance fees" is modulated stronger to the

context that asks about duration, getting adapted to “Well, that’s a lot of time to wait for the

draft to be drawn.". Note that we omit this row for the examples where it simply leaves the

input unchanged, or produces outputs that are noticeably unfaithful or ill-formed.

5.10.2 Complementarity of Components

Sometimes, a component may su�er from example speci�c issues e.g. In Example 35-2, the

Commonsense approaches misinterpret what is a driving ticket in the context of the dialog

as an event ticket, drawing inferences accordingly. However, even in such cases, the other

component salvages the situation and ensures overall response set remains healthy - e.g., here,

Retrieval produces pertinent responses like Could you tell me how you dealt with it this time?,

No I haven’t. What about you ? etc. In Example 10-3, we see the opposite situation, where

the responses from Retrieval are somewhat less relevant, but Commonsense produces very

pertinent responses such as “i decline the date" and “I go on another date”

5.11 Human Evaluation Details

5.11.1 Quality of References

The quality of references were judged by two graduate students from a university where the

medium of instruction is English. The annotators were requested to ignore minor grammar

issues, and focus more on the content of the response.
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No Type Text

0-5

Context A: I also have blow if you prefer to do a few lines.

Future A: come on man ! i even got dope and acid ! try some !.

Single B: No, I am ok, really.

Multi 2,3 B: what is your price ? ; B: no thanks, I’m out of cash

Multi 4,5 B: yeah , what have you go got ?; B: maybe tomorrow , i ’m running late .

Retrieval B: Well , I guess Zina �gured you couldn’t blow it if you were in the hotel room .

Retrieval w CA B: I have a few lines of blow , but it is not necessary in the way of the rest of the script .

Commonsense B: i want to go to bathroom; B: i want to play game; B: i want to have rest; B: i want to sleep

1-1

Context B: The taxi drivers are on strike again A: What for?

Future A: it is really a hot potato .

Single B: They want the government to reduce the price of gasoline .

Multi 2,3 B: they want more pay for their time .; B: they are not happy with their permit related expenses .

Multi 4,5 B: they want healthcare and bene�ts .; B: i don’t know . i just know there are no cabs in the city

Retrieval B: Well . Don’t worry about it , I will be happy to share the taxi with you .

B: I think the price is a little high , can’t you reduce it?

Retrieval w CA B: Well , they are not going to be able to get their fares back .

B: I think the reason is a little more complicated than that .

4-4

Context A: Do you think you can make yourself easily understood in English ?

Single B: yes , in most circumstances .

Multi 2,3 B: my english is �ne . my keyboard sometimes just acts up . ; B: yes, and i’m constantly trying to improve my communication.

Multi 4,5 B: i do n’t know . i may be to nervous and then i ’ll mess up . ; B: yes , i believe so . i ’ve been speaking english since birth .

Retrieval B: Yes , I’m young , and unmarried . It’s no problem for me to travel frequently .

Retrieval w CA B: Yes , I’m able to understand English . It ’s not that I don’t understand English .

10-3

Context B: Hold on , please . Let me check it for you . Yes , you’re right . You will keep it for 3 days .

A: Well , now I want to change the date from 24th to 28th .

Single B: ok , that shall be arranged .

Multi 2,3 B: we can easily do that for you . ; B: i ’m sorry but someone’s reserved the room for 28th . i can o�er you a di�erent room ?

Multi 4,5 B: i can extend your stay time but it may cost more since it is going into the holiday . ;

B: i can give you a di�erent double room for the 28th at a discounted price .

Retrieval B: All right . May I have your name ? ; B: Apparently there is only $ 57 left in your account . ;

B: Here you are . What is the rate ?; B: I prefer not to move �rst .

Commonsense B: i decline the date ; B: i go on another date; B: i go on a date;

B: i get nervous; B: i get rejected; B: i get dumped; B: i feel sad

23-10

Context B: I mainly eat baked chicken , because there’s not a lot of fat . A: that does sound pretty good .

Single B: i know it does , and that ’s because it is .

Multi 2,3 B: yes , it is very good and pretty healthy .; B: it is good , you should come over and i will make you dinner .

Multi 4,5 B: thanks , it ’s been a struggle , but i am starting to see results . ;

B: i appreciate your kind words , i am getting used to eating more healthy .

Retrieval B: You should try it . You won’t be disappointed .; B: Do you have any plans for tomorrow ? ; B: That’s it ? ;

B: Just about . ; B: I like �sh . Please bring me an order of that .

Commonsense B: i want to cook dinner; B: i want to go to movie; B: i want to write letter ;

B: i will open your mouth; B: i will think about what you want; B: i will drink some water;

35-2

Context B: I’ve never gotten one . Have you ? A: I got a ticket yesterday .

Future A: i parked in the red zone .

Single B: really ? what did you get one for ?

Multi 2,3 B: what was it for ? ; B: how much is it ?

Multi 4,5 B: do you resent you got a ticket ? ; B: are you going to appeal the ticket ?

Retrieval B: I’ve gotten a few .; B: No , I haven’t . What about you ? ; B: Could you tell me how you dealt with it this time ? ;

B: I will explain it in detail in the next class , could you preview it ?

Commonsense B: i give ticket to you; B: i give ticket to the cashier; B: i give ticket to the clerk.;

B: i feel happy .; B: I feel excited .; B: i feel annoyed . ; B: I feel disappointed .;

B: i see what else they can do .; B: i see what else they can do to get the ticket; i go to the event

Table 5.5: Example context-response pairs from the test split of DailyDialog, showing the au-

tomated responses returned by di�erent sub-components of Scarce. ContextAdapt is short-

ened to CA for brevity.

5.12 Computing Details

The GPUs used for Commonsense and ContextAdapt experiments were a Geforce Rtx 2080

and TitanX Pascal respectively.
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Chapter 6

VisCTG: Improving Plausibility of

Microplanning for Concept-To-Text

Generation Through

Retrieve-Caption-Generate

(AAAI 2022)

85



March 25,2022

[Method][Knowledge]

We’re already able to see isolated cases

where Cyc is learning things on its own.

Some of the things it learns re�ect the

incompleteness of its knowledge and are

just funny. For example, Cyc at one point

concluded that everyone born before

1900 was famous, because all the people

that it knew about and who lived in

earlier times were famous people.

Doug Lenat, speaking to The Austin

Chronicle in 1999, about his

commonsense KB/reasoner Cyc

In this chapter, we devise and investigate enhancements to SOTA pretrained generator mod-

els to improve their microplanning ability, and consequently, their output quality. The speci�c

approach we take to study microplanning here is in the context of accomplishing concept-

to-text generation tasks (see §1.1.2) such as the generative commonsense reasoning task a.k.a

Commongen [110], where the communicative goal is to generate a sentence describing a plausi-

ble situation involving a given set of input concepts. As an example, consider the input {horse,

carriage, draw}. Two potential adequate outputs for this would be The carriage is drawn by the

horse. and The Sun God’s carriage has seven horses drawing it. (See Table 6.4 for more actual

examples from our corpus). Speci�cally, we improve their abilities in terms of the lexicaliza-

tion and referring expression generation subtasks, with a particular focus on pairwise lexical

relationships, especially those pertaining to commonsense plausibility. We are well aware of

the other outstanding challenges within these subtasks such as intra-sentence content ordering

and local discourse coherence, as well as the outstanding microplanning subtask of sentence

aggregation; but decide to �rst focus on the aforementioned subtasks and challenges given that

concept-to-text generation tasks provide an ideal testbed to isolate out and study these.

We identify several critical issues in baseline model outputs for this task, like poor common-

sense plausibility, inadequate pairwise lexical relationships, incomplete or missing arguments

and referring expressions, and dullness/lack of speci�city.
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We build from a fundamental concern as a starting point to posit our ameliorating approach.

Is language as a modality itself su�cient to learn the type of commonsensical pairwise lexical

relationships necessary to microplan more adequate, situation-describing sentences given the

input concept sets? If not, why so? And more importantly, if not, how can one address this?

Would incorporating information from another modality help?

The Zip�an nature of language by itself leads to a large number of concepts with relatively

fewer occurrences. For pairwise co-occurrences , this problem compounds even further. How-

ever, a second, more important concern is the well noted phenomenon of reporting bias [67]

— wherein unusual, exceptional and “newsworthy" events, concepts and relationships e.g. ba-

nanas being red, are mentioned more in text corpora compared to their usual, mundane and

obvious counterparts e.g bananas being yellow. Note that reporting bias here does not refer to

any kind of inductive bias w.r.t. models, but the bias that exists in the medium of text itself in

terms of the distribution of real world events about which text is created i.e. they are “reported"

in text.

A third concern is the e�ect of the Gricean Maxim of Quantity, whereby speakers say only

as much as is necessary, omitting information which the listener is assumed to know from com-

monsense. As a result, typical sentences in corpora often omit information about su�ciently

obvious relationships between concepts e.g., plates being atop a table, or boats typically being

a�oat on an underlying water body.

We posit that these issues could indeed have a signi�cant e�ect on the NLG model’s learning

for CommonGen, and incorporating information from another modality such as vision could

signi�cantly help dampen this e�ect.

We investigate the use of multimodal information contained in images as an e�ective method

for enhancing the commonsense of large, pretrained models for text generation. We perform

experiments using BART and T5 as base NLG models. Note, however, that our method is ag-

nostic to the nature of pretrained base architectures used, and does not exploit any particulars

of transformers, masked pretraining or any other speci�cs of the BART and T5 architectures.

We acknowledge the presence of a vast diversity of base architectures for generation in the

research prior to these both, and use these two simply as a �rst step in demonstrating our ap-

proach’s e�cacy. We call our approach VisCTG: Visually Grounded Concept-to-Text Generation.

VisCTG involves captioning images representing appropriate everyday scenarios, and using

these captions to enrich and steer the generation process.

Speci�cally, the intervention we devise to the E2EN2PP is the addition of an Input Expan-

sion Layer between the Input and the Embedding Layer. Before passing the input string to the
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Embedding Layer, the Input Expansion Layer symbolically augments it with the captions of re-

trieved relevant images described above. Figure 6.1 illustrates our intervention.

Figure 6.1: An illustration of how the E2EN2PP �eshed out in Figure 1.2 would work in action for

the actual generation task and input example, after incorporating the Intervention in Chapter

6. Here, the task is to summarize the given input news article to within 280 characters. The text

marked out in carrot-red in the Final Output , i.e dedocked is clearly picked up by the model

from the caption-expanded portion of the input (also marked in carrot-red)

Comprehensive evaluation and analysis demonstrate that VisCTG noticeably improves model

performance while successfully addressing aforementioned issues noticed in the baseline gen-

erations.

6.1 Introduction

Large pretrained neural models have seen increasing popularity for NLP tasks and applications.

This includes SOTA text generation models such as BART [104] and T5 [172]. Larger corpora

and better pretraining losses are major reasons driving these gains. However, despite increas-

ing attention on the commonsense of models through works like COMET [18], studies have

shown that even large pretrained models still struggle with commonsense tasks that humans

can reason through very easily [225]. We believe that there is commonsense information in
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{stand, hold, umbrella, street} {food, eat, hand, bird}

baseline: A holds an umbrella while standing on the street baseline: hand of a bird eating food

capt: a woman walking down a street holding an umbrella capt: a person holding a small bird in their hand

VisCTG: A woman stands on a street holding an umbrella. VisCTG: A bird eats food from a hand.

{cat, bed, pet, lay} {fence, jump, horse, rider}

baseline: A cat is laying on a bed and petting it. baseline: A rider jumps over a fence.

capt: a cat laying on a bed with a stu�ed animal capt: a horse is jumping over a wooden fence

VisCTG: A cat laying on a bed being petted. VisCTG: A rider jumps a fence on a horse.

Table 6.1: Examples of retrieved images, associated captions, baseline and VisCTG (our visually

grounded model’s) generations for select concept sets. Note that the images and captions are used as

an intermediary to guide the �nal generation and thus the �nal generation need not be faithful to them.

E.g. there is nobody petting the cat in the image or caption, but since the VisCTG output is conditioned

on both the concept set and the caption, it includes being petted.

other modalities like vision, beyond what is reported [67] in text, which can possibly augment

commonsense and enhance decision-making processes of text generation models.

In this chapter, we show this is true by improving the performance of Transformer-based

text generation models on concept-to-text generation using visual grounding, which we call

VisCTG: Visually Grounded Concept-to-Text Generation. Concept-to-text generation is a high-

level formulation of several constrained text generation and data-to-text natural language gen-

eration (NLG) tasks. These are challenging tasks that have seen increasing interest, and involve

generating natural language outputs given certain pre-conditions, e.g. speci�c words in the

outputs, or from a collection of structured or semi-structured inputs. They typically involve

converting a set of inputs into natural language text. These inputs can normally be thought of

as concepts, or high-level words or structures, that play an important role in the generated text.

CommonGen [110] involves generating sentences that e�ectively describe everyday sce-

narios from concepts sets, which are words that must appear in the output. CommonGen is
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challenging as e�ective relational reasoning ability using commonsense knowledge is required.

Models must also possess the compositional generalization capabilities to coalesce together dif-

ferent concepts. CommonGen is an e�ective benchmark for constrained text generation and

commonsense as its task formulation and evaluation methodology are rather broadly applica-

ble.

We experiment on CommonGen using BART and T5. An initial analysis (§6.3.1) of baseline

generations shows several issues related to commonsense, speci�city, and �uency. We hypothe-

size that these can be addressed through image captions (§6.3.2). Images representing everyday

scenarios are commonplace, and typically logical and grounded in commonsense. Captioning

models can also normally produce decent captions for everyday images, which can be used to

guide and enhance the generation process. See Table 6.1 for examples.

Expounding on this, we use a pretrained image captioning model on MSCOCO captions

[114] to caption the top retrieved images for each concept set (§6.4.1,6.4.2). We use these cap-

tions as additional information to augment inputs to our generation models (§6.4.3). Extensive

evaluation (§6.6) demonstrates that VisCTG improves model performance and commonsense

while addressing the baseline inadequacies.

6.2 Dataset, Models, and Metrics

6.2.1 CommonGen Dataset

The original CommonGen dataset is made up of 35,141 concept sets (consisting of 3 to 5 key-

words each) and 79,051 sentences, split into train, dev, and test splits. Since the original test

set is hidden, we partition the original dev set into new dev and test splits for the majority of

our experiments. We do, however, ask the CommonGen authors to evaluate our best VisCTG

models on the original test set (more in §6.6). The training set remains the same. We refer to

the original dev and test sets as devO and testO, and these new splits as trainCG, devCG, and

testCG. Table 6.2 contains information about these splits. Their relative sizes and distribution

of concept set sizes within each are kept similar to the originals.

6.2.2 Models: T5 and BART

We use pretrained text generation models T5 and BART, both the base and large versions. Both

are seq2seq Transformer models. T5 has strong multitask pretraining. BART is pretrained as
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Dataset

Stats

TrainCG DevO TestO DevCG TestCG

# concept

sets

32,651 993 1,497 240 360

size = 3 25,020 493 - 120 -

size = 4 4,240 250 747 60 180

size = 5 3,391 250 750 60 180

Table 6.2: Statistics of CommonGen dataset splits.

Model\Metrics BLEU-4 CIDEr SPICE

Reported BART-large 27.50 14.12 30.00

Reported T5-base 18.00 9.73 23.40

Reported T5-Large 30.60 15.84 31.80

Our BART-base 28.30 15.07 30.35

Our BART-large 30.20 15.72 31.20

Our T5-base 31.00 16.37 32.05

Our T5-large 33.60 17.02 33.45

Table 6.3: Comparing devO performance of our re-implemented models to those in Lin et al. [110]. Bold

represents where we reach/exceed reported numbers. Results averaged over two seeds for our models.

Lin et al. [110] did not report BART-base. See §6.2.3 for metric explanationsfor comparison of all metrics.

a denoising autoencoder to reproduce original from noised text. We use their HuggingFace

implementations.

We train two seeded versions of each model on trainCG and evaluate their performance

on devO. These serve as the baselines for our experiments. Using the numbers in Lin et al.

[110] as comparison, we validate our implementations. We use the hyperparameters from Lin

et al. [110], beam search for decoding, and select the �nal epoch as the one reaching maximum

ROUGE-2 [112] on the dev split. From Table 6.3, we observe that our re-implementations reach

or exceed reported results in Lin et al. [110] on most metrics.

6.2.3 Evaluation Metrics

We use several evaluation metrics, including those in Lin et al. [110] such as BLEU [151], CIDEr

[228], SPICE [4], and coverage (cov). These (other than cov) assess similarity between human

references and generations. In particular, CIDEr captures a combination of sentence similarity,

grammaticality, saliency, importance, and accuracy. SPICE maps texts to semantic scene graphs

and calculates an F-score over these graphs’ tuples. Lin et al. [110] note that SPICE correlates

highest with human judgment for CommonGen. Cov measures the average percentage of input
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Concept Set Baseline Generation Human Reference

{horse, carriage, draw} horse drawn in a carriage The carriage is drawn by the horse.

{dog, house, eat} A dog eats hay in a house The dog eats food inside the house.

{cow, horse, lasso} A cow is lassoing a horse. A group of men riding horses lassoing a cow.

Table 6.4: Example generations from our baseline models versus human references.

concepts covered by the output text in any form.

We also use BERTScore [253] and Perplexity (PPL). BERTScore measures BERT [40] embed-

dings similarity between individual tokens, serving as a more semantic rather than surface-level

similarity measure. We multiply by 100 when reporting BERTScore. PPL serves as a measure

of �uency, with lower values representing higher �uency. We use GPT-2 [170] for PPL. For all

metrics other than PPL, higher means better performance.

6.3 Initial Analysis and Motivation

6.3.1 Baseline Model Generations

We conduct an initial analysis of the baseline model outputs, and observe that several lack

�uency and commonsense plausibility. Some are more like phrases than complete, coherent

sentences, e.g. “body of water on a raft". Others miss important words, e.g. “A listening music

and dancing in a dark room" misses a noun before listening. A large portion of generations are

generic and bland, e.g. “Someone sits and listens to someone talk". This may be an instance of the

dull response problem faced by generation models [42, 229], where they prefer safe and frequent

responses independent of input information.

Many generations are also implausible. For example, “body of water on a raft" is implausible

as the phrases “body of water" and “a raft" are coalesced together incorrectly i.e., the roles of

raft and body of water are incorrectly swapped. A similar issue occurs with the {horse, carriage,

draw} example in Table 6.4. At times the models also cannot understand what certain nouns

can do i.e., their a�ordances e.g. “A dog checking his phone on a pier.". Several other examples

of this can be found in Table 6.4.

6.3.2 Images and Captions

Images that represent everyday scenarios are quite prevalent for almost any reasonable concept

set. Further, the images are typically grounded in commonsense. For example, searching {cow,
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Figure 6.2: Graph displaying the average coverage (out of 100) by the top NTC captions in aggregate

per concept set.

horse, lasso} will result in many images of cowboys riding horses and lassoing cows, rather

than the illogical situation of “A cow is lassoing a horse." described by the baseline generation

in Table 6.4. Many everyday images are relatively similar to those in image captioning datasets

such as MSCOCO, so pretrained captioning models should work quite e�ectively. We thus

hypothesize that using images and their captions to visually ground concept-to-text generation

can potentially deal with issues mentioned in §6.3.1. Retrieved images with corresponding

captions generated by a pretrained image captioning model (see §6.4.2) and �nal baseline and

VisCTG generations for select concept sets are in Table 6.1.

Textual corpora also su�er from reporting bias [67], where everyday, commonsense albeit

“uninteresting" actions (walking), objects (bench) and facts (bananas are yellow) are underrep-

resented compared to real-world frequency, while “newsworthy" actions (murdering), objects

(spaceships) and facts (blue GMO bananas) are exaggerated. This seeps even into large pre-

trained text models [214]. Using visual data and models dampens this bias, likely improving

the commonsense of generations.

6.4 Methodology

6.4.1 Image Retrieval

We �rst obtain images for each concept set in our three splits. Image captioning datasets such

as MSCOCO and Flickr are typically too small and focused to be e�ective for our purposes since

we must cover numerous di�erent concept sets. Further, a search engine is more generalizable.

We decide to use Google Images. On a sample of concept sets, the retrieved images using

other search engines were inappropriate; they did not incorporate most input keywords nor
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Augmented Input→ Final Generation

wave fall board surfer <s> a surfer riding a wave on a surfboard→ A surfer is falling o� his board

into the waves.

dance stage front crowd <s> a crowd of people watching a man on a stage <s> a man is holding a

microphone in front of a crowd→ A man dances in front of a crowd on stage.

stand hold umbrella street <s> a woman walking down a street holding an umbrella <s> a woman

walking down a street holding an umbrella <s> a girl holding a pink umbrella in a city <s> a man

holding an umbrella in a city <s> a group of people standing under a umbrella→ A group of people

standing on a street holding umbrellas.

Table 6.5: Examples of augmented inputs and �nal generations for varying values of NTC.

handle homonyms well. For example, “sports+fan+watch" yields images of fans watching a

sports game on Google images, but images of hand watches on Bing and DuckDuckGo.

We queried input concept sets by concatenating keywords with plus signs (+), and used

simple-image-scraper1
to obtain URLs of the top 30 results. The image was scraped only if the

URL ended in .png, .jpeg, .jpg, or .gif. The received content was veri�ed to be valid images using

pillow2
, otherwise skipped. Retrieved images were typically of high quality and corresponded

well to the concepts. See Table 6.1 for examples.

6.4.2 Image Captioning

After retrieving images, we use a PyTorch-based implementation
3

of the FC image caption-

ing model [122, 189], which generates a caption via an LSTM initialized with a pseudo token

obtained by feeding the image into a deep CNN followed by a linear projection. We use a pre-

trained FC model trained on the MSCOCO dataset with pretrained Resnet-101 image features.

As most of our retrieved images represent everyday scenarios and are relatively similar to those

in MSCOCO, the pretrained model performs quite well. See example captions in Table 6.1.

6.4.3 Caption Selection and Input Augmentation

After we have captions Sc = {c1, c2, ..., cn} for each concept set in all three splits, we reorder

them by descending coverage to the concept set to obtain Sc′ = {c′1, c′2, ..., c′n}. If two captions

are tied for coverage, we keep them in their original search result order. This allows us to select

1https://pypi.org/project/simple-image-download/
2https://pypi.org/project/Pillow/
3https://github.com/ruotianluo/self-critical.pytorch
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the captions that have highest coverage and are most relevant.

Since most retrieved images and corresponding captions cover only a fraction of the en-

tire concept set, and the quality of each varies, we hypothesize that using multiple captions

for generation may lead to more robust and higher-quality outputs with more coverage. The

models may learn to assimilate together information from caption(s) while generating �nal

texts. Hence, we try experiments using di�erent numbers of top captions within Sc′ , a param-

eter we call NTC (Number of Top Captions). We try NTC = 1, 2, 3, 5, 7, 10, and do not go

above NTC = 10 as Figure 6.2 shows that coverage gains from 10→ 30 are minor. Figure 6.2

also illustrates that captions have relatively low individual coverage, especially compared with

outputs from models trained on CommonGen, which is why we do not use them as a baseline.

The captions are concatenated together and onto the concept set using <s> separator to-

kens. These serve as augmented inputs to BART and T5. They learn to convert these augmented

inputs to human references during training, and are fed the augmented inputs (corresponding

to the value of NTC) during validation and testing. Some examples of augmented inputs and

generations can be found in Table 6.5.

6.5 Experiments

6.5.1 Model Training and Selection

For training VisCTG models, we mainly follow baseline hyperparameters, barring learning rate

(LR) that is tuned per NTC value, and the maximum encoder length which is chosen depending

on the tokenizer and value of NTC to ensure the entire input sequence can �t onto the encoder.

We train two seeds per model.

For each model, we choose the epoch corresponding to highest ROUGE-2 on devCG, and use

beam search for decoding. NTC itself is a hyperparameter, so while we train separate versions

of each model corresponding to di�erent NTC values, the �nal chosen models correspond to

the NTC values that performed best on devCG when averaged over both seeds. We then use the

�nal chosen models to generate on both testCG and testO, and report the results in §6.6.

6.5.2 Human Evaluation

We conduct two human evaluations: one using Amazon Mechanical Turk (AMT), and one using

an expert linguist. For the AMT study, we ask annotators to evaluate 86 testCG examples per
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BART-base (NTC = 5) BART-large (NTC = 2)

Metrics Baseline VisCTG p-value Baseline VisCTG p-value

ROUGE-1 43.96±0.03 45.44±0.08 1.58E-05 45.67±0.25 46.91±0.31 1.58E-05

ROUGE-2 17.31±0.02 19.15±0.21 1.58E-05 18.77±0.04 20.36±0.05 1.58E-05

ROUGE-L 36.65±0.00 38.43±0.07 1.58E-05 37.83±0.29 39.23±0.01 1.58E-05

BLEU-1 73.20±0.28 75.65±0.78 6.94E-05 74.45±0.21 78.80±0.28 6.94E-05

BLEU-2 54.50±0.14 59.05±0.07 6.94E-05 56.25±0.78 61.60±0.85 6.94E-05

BLEU-3 40.40±0.14 44.90±0.42 6.94E-05 42.15±0.49 47.00±0.71 6.94E-05

BLEU-4 30.10±0.14 34.10±0.57 3.82E-03 32.10±0.42 36.25±0.78 2.08E-04

METEOR 30.35±0.35 31.95±0.07 6.94E-05 31.70±0.14 34.00±0.14 6.94E-05

CIDEr 15.56±0.10 16.84±0.05 6.94E-05 16.42±0.09 18.35±0.13 6.94E-05

SPICE 30.05±0.07 31.80±0.28 6.94E-05 31.85±0.21 34.60±0.28 6.94E-05

BERTScore 59.19±0.32 61.44±0.02 1.58E-05 59.95±0.29 62.85±0.30 1.58E-05

Coverage 90.43±0.17 90.66±1.39 0.33* 94.49±0.53 96.49±0.24 1.58E-05

PPL 80.39±3.65 72.45±0.79 1.58E-05 80.37±4.51 68.46±5.90 1.58E-05

Table 6.6: Automatic eval results for BART on testCG over two seeds. Bold corresponds to best perfor-

mance on that metric. We include stat sig p-values (from Pitman’s permutation test [163]) for VisCTG

compared to the baseline. Insigni�cant ones (α = 0.1) marked with *.

model. Our evaluation is based on pairwise comparison of VisCTG and baseline model outputs.

We ask human annotators to choose which amongst the two outputs (presented in a random

order per example) has better Overall Quality. There are 3 choices - O1: VisCTG is better,

O2: baseline is better, O3: both are indistinguishable. To aggregate multiple annotations per

example, we �nd the fraction of responses towards each outcome value as the per-example

distribution. We then �nd the sample mean of this outcome distribution over all examples. For

sample mean and signi�cance testing, we are interested in the values for O1 vs. O2.

For the expert linguist study, our expert is a native English speaker with a graduate de-

gree in linguistics from a North American university. The expert is asked to annotate three

aspects for 50 BART-large
4

testCG examples - Overall Quality (Overall), Commonsense Plausi-

bility (Commonsense), and Fluency (Fluency). For all aspects, we have a pairwise-comparison

evaluation setup similar to that for AMT.

6.6 Results and Analysis

Automatic evaluation results on testCG are in Tables 6.6 and 6.7, and results on testO in Table

6.8.
5

Graphs displaying BLEU-4, CIDEr, and SPICE (the metrics on the CommonGen leader-

4
Since this is the best performing VisCTG model - see §6.6.

5
Evaluated by the CommonGen authors on their hidden test set.
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T5-base (NTC = 2) T5-large (NTC = 1)

Metrics Baseline VisCTG p-values Baseline VisCTG p-values

ROUGE-1 44.63±0.13 46.26±0.07 1.58E-05 46.32±0.26 46.93±0.22 7.26E-04

ROUGE-2 18.40±0.14 19.78±0.30 1.58E-05 19.59±0.12 20.01±0.23 0.02

ROUGE-L 37.60±0.16 38.91±0.27 1.58E-05 39.20±0.21 39.52±0.43 0.06

BLEU-1 73.60±0.85 76.80±0.28 6.94E-05 77.55±0.35 78.65±0.21 4.65E-03

BLEU-2 57.00±0.71 60.30±0.28 6.94E-05 60.80±0.28 61.55±0.35 0.07

BLEU-3 42.75±0.49 46.25±0.64 6.94E-05 46.50±0.00 47.10±0.57 0.11*

BLEU-4 32.70±0.42 36.10±0.85 6.94E-05 36.20±0.14 36.40±0.28 0.21*

METEOR 31.05±0.49 32.70±0.00 6.94E-05 33.20±0.00 33.65±0.49 0.49*

CIDEr 16.26±0.25 17.65±0.02 6.94E-05 17.79±0.01 17.94±0.25 0.23*

SPICE 31.95±0.07 33.40±0.28 6.94E-05 33.90±0.42 34.55±0.21 0.03

BERTScore 61.40±0.34 62.42±0.17 1.58E-05 62.67±0.09 62.72±0.03 0.34*

Coverage 90.96±1.77 94.48±1.39 1.58E-05 94.40±0.02 95.95±0.45 1.58E-05

PPL 83.04±1.62 77.50±3.86 3.16E-05 81.78±4.63 73.41±4.32 1.58E-05

Table 6.7: Automatic eval results for T5 on testCG over two seeds. Bold corresponds to best performance

on that metric. We include stat sig p-values (from Pitman’s permutation test [163]) for VisCTG compared

to the baseline. Insigni�cant ones (α = 0.1) marked with *.
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Figure 6.3: BLEU-4, CIDEr, and SPICE on testCG over di�erent values of NTC for BART-base and T5-

base.

board
6
) on testCG over di�erent NTC values are in Figure 6.3. Human evaluation results on

testCG are in Tables 6.9 and 6.10. Optimal NTC values for BART-base, BART-large, T5-base,

and T5-large are 5, 2, 2, and 1, respectively. These are the VisCTG results reported in the afore-

mentioned tables. Table 6.11 contains qualitative examples.

6.6.1 Analysis of Automatic Evaluation Results

We see from Tables 6.6 and 6.7 that VisCTG outperforms the baselines on all metrics across

the models on testCG. Performance gains are strong and statistically signi�cant for BART-base,

6https://inklab.usc.edu/CommonGen/leaderboard.html
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Models\Metrics ROUGE-2/L BLEU-3/4 METEOR CIDEr SPICE Coverage

T5-base (reported baseline) 14.63 34.56 28.76 18.54 23.94 9.40 19.87 76.67

T5-large (reported baseline) 21.74 42.75 43.01 31.96 31.12 15.13 28.86 95.29

BART-large (reported baseline) 22.02 41.78 39.52 29.01 31.83 13.98 28.00 97.35

EKI-BART [47] - - - 35.945 - 16.999 29.583 -

KG-BART [117] - - - 33.867 - 16.927 29.634 -

RE-T5 [233] - - - 40.863 - 17.663 31.079 -

T5-base VisCTG 22.83 44.98 45.749 34.722 31.809 16.173 28.808 92.92

T5-large VisCTG 23.83 45.76 47.376 36.409 33.012 16.815 29.629 95.54

BART-base VisCTG 21.73 43.43 43.235 32.291 30.86 15.187 27.403 88.98

BART-large VisCTG 23.68 45.07 48.031 36.939 33.215 17.199 29.973 94.86

Table 6.8: Automatic eval results of VisCTG models on testO , evaluated by CommonGen authors. We

compare to reported baseline numbers in Lin et al. [110] (they did not evaluate BART-base), and models

on their leaderboard with publications at time of writing that outperform baselines. Their leaderboard

reports BLEU-4, CIDEr, and SPICE. Bold corresponds to best performance (for those three) per model

type+size.

Model O1 O2 O3 IAA

BART-base 0.45 0.33 0.22 0.72

BART-large 0.62 0.18 0.20 0.55

T5-base 0.46 0.33 0.21 0.72

T5-large 0.46 0.34 0.20 0.74

Table 6.9: Avg. AMT eval results on testCG for overall quality. O1: VisCTG wins, O2: baseline wins,

O3: both indistinguishable. Bold corresponds to higher fractional outcome between O1 and O2. All

results are statistically signi�cant based on paired two-tailed t-tests and α = 0.1. The inter-annotator

agreement (IAA) is the average direct fractional agreement (where both annotators choose O1 or O2)

over all examples. See §6.5.2 for further details.

Model Aspect O1 O2 O3

BART-large

Overall 0.44 0.24 0.32

Commonsense 0.32 0 0.68

Fluency 0.56 0.12 0.32

Table 6.10: Avg. expert linguist eval results on testCG for BART-large. O1: VisCTG wins, O2: baseline

wins, O3: both indistinguishable. Bold corresponds to higher fractional outcome between O1 and O2 per

aspect. See §6.5.2 for further details.

BART-large, and T5-base. VisCTG appears relatively less e�ective for T5-large which is the

strongest baseline, and hence improving its performance may be more di�cult.

From Table 6.8, we see that VisCTG models substantially outperform corresponding base-

lines reported in Lin et al. [110] on testO. T5-base VisCTG outperforms the reported T5-base

and large baselines across metrics, and BART-base VisCTG performs similarly to the reported
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Method Text

Concept set {sit, chair, toy, hand} (example 1)

Captions a little girl sitting on a chair with a teddy bear <s> a small child sitting on a chair with a

teddy bear <s> a young boy sitting on a chair with a skateboard <s> a man sitting on a

chair with a remote

BART-base-BL hands sitting on a chair

BART-base-

VisCTG

A boy sitting on a chair with a toy in his hand.

Human reference A baby sits on a chair with a toy in one of its hands.

Concept set {food, eat, hand, bird} (example 2)

Captions a bird is perched on a branch with a hand <s> a person holding a small bird in their hand

BART-large-BL hand of a bird eating food

BART-large-

VisCTG

A bird eats food from a hand.

Human reference A small bird eats food from someone’s hand.

Concept set {bench, bus, wait, sit} (example 3)

Captions a man sitting on a bench with a book <s> a person sitting on a bench with a laptop

T5-base-BL A bus sits on a bench.

T5-base-VisCTG A man sits on a bench waiting for a bus.

Human reference The man sat on the bench waiting for the bus.

Concept set {jacket, wear, snow, walk} (example 4)

Captions a young boy in a red jacket is standing in the snow <s> a man in a red jacket is standing

in the snow

BART-large-BL walking in the snow wearing a furry jacket

BART-large-

VisCTG

A man is walking in the snow wearing a jacket.

Human reference Jamie took a walk out into the snow with only a T shirt on and instantly went back inside

to wear his jacket.

Concept set {hold, hand, stand, front} (example 5)

Captions a man holding a pair of scissors in front of a wall

T5-large-BL Someone stands in front of someone holding a hand.

T5-large-VisCTG A man stands in front of a man holding a hand.

Human reference A man stands and holds his hands out in front of him.

Concept set {bag, put, apple, tree, pick} (example 6)

Captions a person holding a apple in a tree <s> a bunch of apples are growing on a tree <s> a

close up of a green apple with a tree <s> a bunch of apples are growing on a tree

BART-base-BL A man is putting apples in a bag and picking them up from the tree.

BART-base-

VisCTG

A man puts a bag of apples on a tree.

Human reference I picked an apple from the tree and put it in my bag.

Table 6.11: Qualitative examples for testCG. BL stands for baseline. Concept set refers to the input

keywords and Captions refers to the captions (separated by <s>) used by the VisCTG model for that

particular example to produce its �nal generation.
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BART-large baseline. BART-large VisCTG outperforms the reported baseline, EKI-BART [47],

and KG-BART [117]. These are SOTA published CommonGen BART models that use exter-

nal knowledge from corpora and KGs. We show that visual grounding is more e�ective, and

BART-large VisCTG would place very high on the leaderboard.
6

T5-large VisCTG outperforms

the reported baseline, but lags behind the SOTA published RE-T5 [233].

Figure 6.3 shows that as NTC increases, BLEU-4, CIDEr, and SPICE increase to a peak, and

taper o� after. This is expected as we saw in Figure 6.2 that the rate of increase of coverage

declines with larger NTC. The latter images and captions are of diminishing quality, and hence

using too many negatively a�ects model performance.

6.6.2 Analysis of Human Evaluation Results

Table 6.9 shows that VisCTG outperforms the baseline on all four models based on human an-

notators (with high IAA). Annotators, on average, prefer VisCTG outputs over baseline outputs

on overall quality, especially for BART-large. Table 6.10 illustrates that VisCTG outperforms the

baseline model for BART-large based on an expert linguist’s perspective. VisCTG outputs are

highly preferred, on average, over the baseline on all three aspects of overall quality, common-

sense, and �uency. This aligns with our automatic results in §??, where VisCTG outperforms

the baselines across all models.

6.6.3 Qualitative Analysis

Table 6.11 shows several baseline outputs that contain issues from §6.3.1, e.g., incomplete and/or

illogical sentences. Human references are all �uent and logical. VisCTG can usually generate

much higher-quality text than the baselines.

The baseline outputs for ex. 1-2 are phrases lacking arguments, and all illogical for ex. 1-3.

Using captions, VisCTG successfully adjusts semantic roles of entities, replaces incorrect sub-

jects, �xes dependency structure, and grounds generations in commonsense. For ex. 1, captions

are of the form “{X} sitting on a chair with {Y}", where {X} is a subject and {Y} an object. VisCTG

output has similar structure, being �uent and logical with higher coverage. The baseline out-

put also has an incorrect subject of “hands". Our VisCTG output contains an additional entity

(not present in the input set) of “boy" as subject, likely since it is a subject in the captions.

This highlights the usefulness of visual grounding, as the image space can provide additional

commonsense information not present in the text (e.g. toys are associated with children/boys).

For ex. 2, the baseline output treats “hand of a bird" as a single entity, the subject. Captions
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separate “bird" and “hand" into two, likely guiding the VisCTG output to do so. For ex. 3, the

baseline misplaces “bus" as subject. Captions are of form “{X} sitting on a bench {Y}", where {X}

is a logical subject and {Y} is an expression. The VisCTG output has this structure, with correct

subject and commonsense, and higher coverage. Overall, we see that visual grounding guides

the model to learn which nouns/subjects can perform which actions (e.g. “hands" cannot sit on

a chair but a “boy" can), which is a major baseline de�ciency discussed in §6.3.1.

For ex. 4, the baseline output lacks a subject that the captions contain, likely guiding the

VisCTG output to contain one: “a man". For ex. 5, the baseline output is generic due to uses

of “someone". VisCTG’s output is more speci�c and refers to “man", likely because the caption

(though not very �tting) includes a “man" subject. Even for captions that �t the concepts less,

structure and �uency can still be exploited.

Overall, we see that the baselines simply try to coalesce together the input concepts into

a form of English syntax, often failing to do so e�ectively. VisCTG models can produce more

grammatical, �uent, and logical text by exploiting the syntactic and dependency structures of

the captions. Further, the visual grounding improves the commonsense of the generations. The

images inherently capture commonsense by representing everyday scenarios, and this com-

monsense info is rarely explicitly included in text. Hence, large text-based models such as our

baselines tend to not know this info, whereas VisCTG models learn it through the grounding.

VisCTG is, however, still a far way o� from perfect. For ex. 6, its output is less logical and

lower coverage than the baseline’s. The captions are all simplistic and low coverage; the �rst

is illogical, and some others are of the form “a bunch of apples {...} on a tree", likely negatively

impacting the generation. Ex. 4’s human reference is creative, which is an area where VisCTG

still lacks in comparison. For ex. 5, while VisCTG edits “someone" to “man", it is unable to

merge the two instances of “man" or adjust the sentence to be more coherent. These weaknesses

are likely because captions tend to be simplistic (due to the captioning model’s training data),

limiting VisCTG’s ability to make heavier edits. VisCTG, unsurprisingly, appears to depend

quite heavily on the captions, and hence the quality of the images and captioning model.

6.7 Related Work

Constrained Text Generation: There have been several works on constrained text genera-

tion. Miao et al. [136] use Metropolis-Hastings sampling to determine Levenshtein edits per

generation step. Feng et al. [50] devise Semantic Text Exchange to adjust topic-level text se-

mantics.
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Data-to-text NLG: E2E-NLG [44] and WebNLG [64] are two popular NLG benchmarks with

structured inputs - meaning representation (MR) and triple sequences, respectively. Montella

et al. [138] use Wiki sentences with parsed OpenIE triples as weak supervision for WebNLG.

Commonsense Injection and Incorporation: One large commonsense knowledge graph

(KG) is COMET, trained on KG edges to learn connections between words and phrases. EKI-

BART [47] and KG-BART [117] use external knowledge (from corpora and KGs) to improve

BART’s performance on CommonGen. Distinctly, VisCTG uses visual grounding and shows

higher performance (see §6.6). Visual Commonsense Reasoning (VCR) [250] involves answering

commonsense-related multiple-choice questions about images. Our work uniquely focuses on

injecting commonsense into seq2seq Transformer models like BART and T5 for text generation.

Multimodal Machine Learning and NLP: There has been more work on multimodality,

in areas like representation and video captioning, but little for constrained and data-to-text

NLG [10, 63]. There is work on pretrained multimodal models like ViLBERT [121], which are

mainly encoders that jointly represent images and text rather than seq2seq models, and would

be ill-suited for generation. Further, unlike these models which are pretrained, VisCTG exploits

per-example visual information to �x speci�c issues for each concept set.

6.8 Conclusion and Future Work

In conclusion, we motivated and explored the use of visual grounding for improving the mi-

croplanning abilities of Transformer models for concept-to-text generation tasks. We christen

our method VisCTG: Visually Grounded Concept-to-Text Generation. Extensive experiments

on BART and T5 showed its e�cacy on the CommonGen task. Comprehensive evaluation and

analysis showed that VisCTG boosts model performance and commonsense while addressing

baseline de�ciencies.

Our empirical �ndings support our hypothesis that relying on language alone is insu�cent

to learn a good NLG model for CommonGen and could cause the issues we observed in our

baseline ouputs e.g those in Table 6.4 . They also con�rm our intuition that incorporating

information from the visual modality can in part ameliorate this insu�ciency. Furthermore,

they support the case for intervening in the E2ENLP and introducing an Input Expansion Layer

between the Input Layer and Embedding Layer to symbolically augment the input with captions

of retrieved images, as described in Figure 6.1.
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Potential future work includes improving image search and captioning, e.g. better selection

of images during retrieval or using a stronger captioning model. Video captioning and image

generation rather than retrieval can also be explored. Further, VisCTG can be investigated for

other data-to-text NLG tasks, e.g. WebNLG.

In this chapter, we successfully devised enhancements to SOTA pretrained generator mod-

els to improve their microplanning ability, and consequently, their output quality, while ac-

complishing concept-to-text generation tasks (see §1.1.2) such as the generative commonsense

reasoning task a.k.a Commongen [110].

Our work supported the case for two ways of intervening in the end to end NLG pipeline

to improve microplanning abilities of such NLG models - namely incorporating i) an input

expansion stage and ii) Having a feedback loop from the NLG model’s Output Layer to its Input

Layer.

6.8.1 Broader Takeaways

The broader takeaway from our �ndings is that in any task where the communicative goal

(or the “input text" part of the communicative goal) leaves gaps w.r.t. the relations amongst

di�erent parts of the input to be �lled in a “plausible", commonsensical kind of way, report-

ing bias is naturally bound to be a problem for any model trained on typical natural language

corpora. Examples of such input information include sets of concepts (as in our case), recipes

or Wikipedia infoboxes. In such situations, using another modality (which could be something

like images/audio, or even another language) which has lesser or di�erent reporting bias, to “ex-

pand" the underspeci�ed input information is a potential architectural enhancement to explore

in order to improve the microplanning i.e the plausibility and internal structure of sentences.

Implementing this kind of input “expansion" requires a mechanism to ground the input into

the other modality, and then reground it back. In the case of concept-to-text generation tasks,

the simple nature of the input information and the availability of well optimized search engines

greatly simpli�es and streamlines the grounding process, which is unlikely to be as straightfor-

ward in the general case. Furthermore, even the regrounding process is simpli�ed due to the

presence of well-developed captioning models.

As an example, consider the task of summarizing social media posts from forums/subreddits

related to a religion with its primary mode of religious discourse and scripture being a non-

English one e.g., Islam or Judaism, who have the bulk of their scriptures, commentaries and

other resources in Arabic and Hebrew respectively, which we shall refer to henceforth as the
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scriptural language. In this case, one potential architectural enhancement based on the same

principle as ours, would be as follows:

1. Translate the input social media post x to the scriptural language using an o�-the-shelf

English→scriptural language translation model.

2. Take the translated input Tscriptural(x) and use it to retrieve similar sentences from any

large corpora of religious texts, commentary, discourse in the scriptural language.

3. Translate back each of the retrieved sentences sicandidate ∈ Retrieve(Tscriptural(x)) to

English using an o�-the-shelf scriptural language→English translation model.

4. Just as we did with the captions of retrieved images, augment the input x with the set of

top K most relevant from amongst the back-translated candidates TEnglish(s
i
candidate).

5. Train the models with the now-augmented inputs.

Here, the scriptural language plays the same role as images/visual modality in this chapter.

Since the scriptural language is more likely to have a wider coverage and range of religious

terminology, arguments and text, it would naturally su�er from lesser reporting bias. The

English→scriptural language and scriptural language→English models serve as the ground-

ing and regrounding mechanisms respectively.

The second takeway from our �ndings is that they underscore the added potential utility of

joint spaces which embed together di�erent modalities, such as the very recent CLIP represen-

tation [171] from OpenAI. Instead of using retrieval from a search engine as in our case, one

can directly compute cross-modal similarities in this space, e.g., between a given input text and

an image.

6.8.2 Deeper Theoretical Questions

Here we highlight some deeper theoretical questions this chapter and the intuition/rationale

behind it, and the fact that the resultant architectural improvements work, raise. We do not have

the moment have an answer to these questions, nonetheless we thought it was worthwhile to

document them.

1. How does one quantify reporting bias of a modality/language? Given two modalities,

is there a theoretically sound way of quantifying which one has more & which one has

lesser reporting bias?

2. How does one quantify if the reporting biases of two modalities exactly overlap or if they

are disjoint? When one combines information from two modalities, what is the reporting
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bias of the augmented information space?

In the case of text and vision, beyond intuition, one can also present the argument that their

reporting biases are bound to be di�erent since they represent two di�erent ways of sampling

the world - the motivation for taking an image of an object or a set of objects is di�erent from

that of writing about it in text. Furthermore, in vision, one always ends up unintentionally

capturing additional objects in images without explicitly intending to do so - this is because

one cannot solely have images of an object in focus without it interacting with other objects

based on its a�ordances, as well as having a background, both of which then appear in the

image.

6.9 Appendices

Model\Metrics ROUGE-2/L BLEU-3/4 METEOR CIDEr SPICE BERTScore Cov

Reported BART-large 22.13 43.02 37.00 27.50 31.00 14.12 30.00 - 97.56

Reported T5-base 15.33 36.20 28.10 18.00 24.60 9.73 23.40 - 83.77

Reported T5-Large 21.98 44.41 40.80 30.60 31.00 15.84 31.80 - 97.04

Our BART-base 15.91 36.15 38.30 28.30 30.20 15.07 30.35 58.26 93.44

Our BART-large 17.27 37.32 39.95 30.20 31.15 15.72 31.20 58.58 95.03

Our T5-base 17.27 37.69 41.15 31.00 31.10 16.37 32.05 60.32 94.44

Our T5-large 17.90 38.31 43.80 33.60 32.70 17.02 33.45 61.39 96.26

Table 6.12: Performance of our re-implemented CommonGen models on devO compared to the original

numbers reported in Lin et al. [110]. Note that for our models, results are averaged over two seeds, and

that the original authors did not experiment with BART-base or report BERTScore. Bold indicates where

we match or exceed the corresponding reported baseline metric.

6.10 Full Re-implementation versusReportedModelNum-

bers

See Table 6.12 for a full comparison (across all metrics) of our re-implemented CommonGen

models compared to the original reported baseline numbers in Lin et al. [110].

105



March 25,2022

(a)

(b)

Figure 6.4: Snapshots of human evaluation: a) instructions seen by annotator and b) an example with

questions.

6.11 Pretrained FC Image Captioning Model Details

The image encoder is a pretrained Resnet-101 [188], where the global avg. pooling of the �nal

convolutional layer output, a vector of dim. 2048, is taken per image. Spatial features are

extracted from the output of a Faster R-CNN [5, 188] with ResNet-101 [73], trained by object

and attribute annotations from Visual Genome [100]. For captioning, the dimensions of LSTM

hidden state, image feature embedding, and word embedding are all set to 512. Please see Luo

et al. [122], particularly Sections 3.3 and 5.1, and Rennie et al. [189], particularly Sections 2 and

5, for more.
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Method Text

Concept set {sunglass, wear, lady, sit}

Captions a woman sitting on a bench with a cell phone <s> a woman sitting on a bench with a book

T5-base-BL A lady sits in a sunglass.

T5-base-VisCTG A lady wearing sunglasses sits on a bench.

Human reference The lady wants to wear sunglasses, sit, relax, and enjoy her afternoon.

Concept set {music, dance, room, listen}

Captions a person is standing in a room with a bed <s> a woman is holding a laptop in a room

BART-large-BL A listening music and dancing in a dark room

BART-large-VisCTG A group of people are dancing and listening to music in a room.

Human reference A boy danced around the room while listening to music.

Concept set {pool, water, slide, slide}

Captions a boat is parked in a water with a boat

T5-large-BL A girl slides into a pool and slides into the water.

T5-large-VisCTG A group of people slide down a slide into a pool of water.

Human reference A boy slides down a bouncy slide into a pool of water.

Concept set {rock, water, stand, body}

Captions a bird sitting on a rock in a body of water

T5-large-BL a body of water standing on rocks

T5-large-VisCTG A man standing on a rock near a body of water.

Human reference A bird standing on a large rock in a body of water.

Concept set {card, deck, shu�e, hand}

Captions a person holding a cell phone in their hand <s> a person holding a pair of scissors in their hand

BART-large-BL a hand shakes a deck of cards

BART-large-VisCTG A man shu�es a deck of cards with his hand.

Human reference A man shu�es a deck of cards in his hands.

Concept set {chase, ball, owner, dog, throw}

Captions a dog is standing in the grass with a frisbee <s> a dog is playing with a frisbee in the grass

T5-base-BL owner throws a ball to his dog during a chase.

T5-base-VisCTG A dog is throwing a ball at its owner.

Human reference The owner threw the ball for the dog to chase after.

Concept set {body, water, bench, sit}

Captions a bench sitting on a beach next to a body of water<s> a man is sitting on a bench with a cell phone<s> a bench

sitting on a of a beach <s> a bench sitting in the middle of a lake <s> woman sitting on a bench with a bird in

the background

BART-base-BL A woman sitting on a bench with water in her body.

BART-base-VisCTG A man sits on a bench near a body of water.

Human reference The woman sat on the bench as she stared at the body of water.

Concept set {bench, sit, talk, phone}

Captions a man sitting on a bench with a cell phone <s> a woman sitting on a bench with a cell phone <s> a man sitting

on a bench with a cell phone <s> a person sitting on a bench with a skateboard <s> a man sitting on a bench

with a laptop

BART-base-BL A man sitting on a bench talking to his phone.

BART-base-VisCTG A man sitting on a bench talking on his cell phone.

Human reference The woman sits on the bench to talk on her daughter on the phone.

Table 6.13: Further qualitative examples for testCG. BL stands for baseline. Concept set refers to the

input keywords and Captions refers to the captions (separated by <s>) used by the VisCTG model for

that particular example to produce its �nal generation.

6.12 BART and T5Model Training and Generation Details

T5-large has 770M params, T5-base 220M params, BART-large 406M params, and BART-base

139M params. Two seeded versions of each baseline and VisCTG model are trained. For decod-

ing, we use beam search with a beam size of 5, decoder early stopping, a decoder length penalty

of 0.6, a decoder maximum length of 32, and a decoder minimum length of 1 for all models. We
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use a maximum encoder length of 32 for the baselines and for the VisCTG models: up to 160

for BART and 256 for T5. A batch size of 64 for T5-base and BART-base, 32 for BART-large, and

8 for T5-large is used for training. We 500 warmup steps for BART-large, and 400 for T5-base,

T5-large, and BART-base. All models are trained up to a reasonable number of epochs (e.g. 10

or 20) and early stopping using our best judgment is conducted, e.g. if metrics continuously

drop for several epochs. Learning rates for VisCTG models were determined by trying several

values (e.g. from 1e-6 to 1e-4), and �nding ones which result in decent convergence behavior,

e.g. dev metrics increase steadily and reach a maximum after a reasonable number of epochs.

For the �nal models (e.g. best NTC values for VisCTG), learning rates are (each set consists

of {BART-base,BART-large,T5-base,T5-large}): baselines = {3e-05,3e-05,5e-05,2e-05}, VisCTG =

{1e-05,5e-06,2e-05,2e-05}.

Google Colab instances were used for training, which used either a single V100 or P100

GPU. Most of the training experiments were performed using a single V100. BART-base models

trained in approx. 1 hour, T5-base models in approx. 1.5 hours, BART-large models in approx.

2 hours, and T5-large models in approx. 6 hours.

6.13 Human Evaluation Details

The Amazon Mechanical Turk (AMT) human evaluation was performed through paid annota-

tors on AMT. Annotators were from Anglophone countries with > 97% approval rate. Each

example was evaluated by up to three annotators. Each AMT task page or HIT contained 2

actual examples and a “quality-check" example in random order. Speci�c instructions and a

question snippet can be seen in Figure 6.4.

On every annotation page, we include one randomly chosen “quality-check" example from

a list of such hand-crafted examples, in addition to two actual examples with VisCTG and base-

line outputs. The hand-crafted examples are constructed to have an obviously good and an

obviously bad output pair, and are sourced from Lin et al. [110]. If an annotator answers the

quality-check question wrong (e.g. they choose the obviously bad output), their two remaining

actual example annotations are excluded while compiling results.

The time given for each AMT task instance or HIT was 8 minutes. Su�cient time to read the

instructions, as calibrated by authors, was also considered in the maximum time limit for each

HIT/task. Annotators were paid 98 cents per HIT. The rate of payment ($7.35/hour) exceeds the

minimum wage rate for the USA ($7.2/hour) and hence constitutes fair pay. We neither solicit,

record, request, or predict any personal information pertaining to the AMT crowdworkers.
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The expert linguist evaluation included a human subject institutional board protocol and a

rate of payment of $15/hour, also exceeding the minimum wage rate for the USA.

6.14 Further Qualitative Examples

See Table 6.13 for further qualitative examples.

109



March 25,2022

110



March 25,2022

Chapter 7

Better Microplans For Concept-to-Text

Tasks By Self Introspecting Input

Expansion

(Under Preparation)

[Method]

I think it’s very important to have a

feedback loop, where you’re constantly

thinking about what you’ve done and

how you could be doing it better

Elon Musk, in an interview to Mashable

7.1 Introduction

In this chapter, we devise and investigate enhancements to SOTA pretrained generator mod-

els to improve their microplanning ability, and consequently, their output quality, while ac-

complishing concept-to-text generation tasks (see §1.1.2) such as the generative commonsense

reasoning task a.k.a Commongen. Speci�cally, we improve their abilities in terms of the lexical-

ization and referring expression generation subtasks, with a particular focus on pairwise lexical

relationships, especially those pertaining to commonsense plausibility.
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As we saw in the earlier Chapter 6, through our initial qualitative as well as qualitative anal-

ysis (See 6.3.1), model outputs even from otherwise state of the art, large pretrained generators

such as BART [104] and T5 [173] su�er from problems such as poor commonsense plausibil-

ity, inadequate pairwise lexical relationships, incomplete or missing arguments and referring

expressions, and dullness/lack of speci�city.

In that chapter, we had devised a model-agnostic strategy of augmenting the input concept

set by routing through the visual modality using a combination of retrieval and captioning. In

this chapter, we explore an entirely alternative family of potential model-agnostic augmenting

strategies to alleviate the aforementioned shortcomings. Our approach is based on the ob-

servation that large, pretrained generator models, by virtue of having been trained to predict

masked out words given their contexts on large corpora such as BookCorpus, also tend to ac-

quire a measure of factual and commonsense knowledge. This has been shown by a wide body

of prior research [160, 213] that evaluates their ability to predict out masked object or subject

spans from lexicalization of triples e.g., [MASK] was the Chancellor of Prussia, the triples being

drawn from knowledge bases like Freebase. [16].

We aim to devise an overarching model architecture based on breaking the aggregate pro-

cess of generation into two passes through the base model (e.g., BART), each of which can

distinctly leverage one of the two abilities of these NLG models, in order, i.e., i) as a concept

augmentation/expansion mechanism ii) as a text sequence to text sequence transducer i.e., in

other words, a generator. Such a formulation makes increased sense in particular for concept-

to-text generation tasks, especially CommonGen, since the communicative goal is to construct

a sentence describing a su�ciently complete, commonsense plausible situation involving all

the given input concepts e.g., The Sun God’s carriage has seven horses drawing it. given {horse,

carriage, draw}. Since the number of input concepts is typically between 3 to 5, the input is

often underspeci�ed, and a large number of situations (both plausible and implausible) can be

potentially constructed by bringing in associated additional concepts. Thus, a generation model

has the two-fold role of

1. Constructing an appropriate set of concepts su�cient to build one or more plausible sit-

uations involving them

2. Composing the concepts together into a �uent, plausible and coherent sentence

Consider, for example, the input {jacket, wear, snow, walk}. With just the baseline model,

we get the output “walking in the furry snow wearing a jacket.". We can see this sentence as

somewhat plausible, though lacking �uency by having a missing subject and a misplaced asso-
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ciation of furry with snow. Running keyword extraction on this output sentence would give us

the concept furry in addition to those already in the input concept set. Now, after augmenting

the input concept set with furry, we again run the baseline model with this augmented concept

set as input, this time producing the output sentence “A man is wearing a furry jacket as he

walks in the snow.". This output sentence is �uent as well as plausible.

7.2 Proposed Approach

7.2.1 Inference

At inference time, in the �rst pass, we only use the model as if one were querying a knowledge

base — given the input concept set, we let the NLG model �rst generate its output as usual.

Then, we use surface-level concept extraction heuristics, speci�cally, the KeyBERT keyword

extraction algorithm
1

to extract out keywords from this output. By only extracting keywords

from this initial model output, we suppress its abilities as a generator for the time being, and

only use it to extract associated concepts. Treating the extracted keywords as additional con-

cepts, we augment them to the original input concept set, hence e�ectively expanding it. With

this augmented input concept set, we now get the second stage NLG output, which we treat as

our �nal result.

7.2.2 Finetuning

Using the above approach during �netuning (i.e., the task-speci�c training of the pretrained

generator model) , however, could lead to two potential pitfalls, a�ecting the convergence as

well as time of the training process, as we explain next.

1. Since the model is still adapting itself to the input format and domain of the task inputs,

as well as learning the conditional dependence of reference text on input text, its own

outputs (i.e., those inferred by decoding from the model, rather than the references) are

likely to be ill-formed during the initial few training steps. Extracting keywords from

these ill-formed and high-variance outputs and feeding them back into the model through

input augmentation is likely to a�ect the stability and convergence of initial �netuning.

2. Training splits are typically much larger (in our case≈ 20 times) than test splits in terms

of number of examples. Furthermore, we iterate over each example many times due to

1https://github.com/MaartenGr/KeyBERT
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the �netuning process spanning over multiple epochs. As a result, the cumulative addi-

tional time entailed by having to do model inference/decoding for each training step is

considerable.

Hence, at �netuning time, to simplify the training process and circumvent these pitfalls , we

simply extract keywords directly from reference(s) corresponding to each training example.

In summary, our approach in this chapter devises a bene�cial way of intervening in the

typical E2EN2PP to improve microplanning abilities of the NLG model. Figure 7.1 illustrates the

interventions devised. Though we restrict our experiments to BART and T5 as the underlying

models, our input augmentation approach can potentially work as an enhancement in tandem

with any su�ciently large and signi�cantly pretrained model architecture with known KB-like

abilities as discussed in §7.1.
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Figure 7.1: An illustration of how the E2EN2PP �eshed out in Figure 1.2 would work in ac-

tion for the actual generation task and input example, after incorporating the Intervention in

Chapter ??. Here, the task is to summarize the given input news article to within 280 charac-

ters. The dotted arrows represent the second pass of inference, after expanding the input with

information extracted by the IE module from the Stage 1/ “Pre-Final" output(marked in red)

7.3 Intended Conclusion

Thus, by a two stage decoupling of the pretrained models abilities as a associative knowledge

store and a transduction model, we posit that we shall be able to signi�cantly alleviate the prob-

lematic aspects of the one-stage outputs from the same models, enhancing its microplanning

abilities.

We expect to see these relative improvements re�ected both in automatic metric based and

human assessments of our devised model outputs as compared to their corresponding baseline

model’s outputs.
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Part III

Macroplanning
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Chapter 8

Viable Content Selection and Refex

Generation Through Pragmatic Backo�

For Chess Commentary Generation

(ACL 2018)

[Knowledge][New Task]

When one shows someone the king in

chess and says: “This is the king”, this

does not tell him the use of this piece —

unless he already knows the rules of the

game up to this last point: the shape of

the king. You could imagine his having

learnt the rules of the game without ever

having been shown an actual piece. The

shape of the chessman corresponds here

to the sound or shape of a word.

Ludwig Wittgenstein, Philosophical

Investigations

In this chapter, we formulate a novel NLG task that in terms of the challenges it poses with

respect to the classical NLG pipeline, sits at the boundary of macroplanning and microplanning
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— it both covers the macroplanning sub-challenge of content selection (what to say?) and the

microplanning sub-challenge of referring expression generation (how to refer to the various

entities, events, relationships and arguments about which you have chosen to say?).

Speci�cally, we present and examine the problem of generating natural language descrip-

tions of chess game moves. Our communicative goal is to generate a short, interesting commen-

tary after a given single move in an ongoing chess game, given the pre-move and post-move

board states as input information. For this task, we introduce a new large-scale chess commen-

tary dataset and devise methods to generate commentary for individual moves in a chess game.

The introduced dataset consists of more than 298K chess move-commentary pairs across 11K

chess games.

Consider the various repurcussions that a single move in a chess game engenders. Even a

single move can change many inter-piece relationships and piece states in the game, including

those between pieces that did not themselves change position during the move. (e.g., a black

rook can threaten the white knight once a black knight blocking the horizontal path between

them moved). The NLG model faces three key challenges:

1. What type of comment to make? One can describe the move and the game itself (Move

Description), describe the quality of the move (Move Quality). We assume the desired

comment type to be additionally given as part of the input, and augment our dataset

input to address the same.

2. What to comment on out of the many updated states and relationships so that its inter-

esting from the game’s perspective? This is related to the content selection subtask that

in turn falls in the macroplanning stage.

3. How to address and refer to the interesting pieces and their relationships in an interesting

way from the game’s perspective? This is related to the referring expression generation

subtask from microplanning.

In order to address challenges 2 and 3, the NLG model encoder has to learn to encode the 2

8 × 8 board states in a game-pragmatically sensitive way. Furthermore, it has to accomplish

this tabula rasa, without any prior knowledge of the game’s rules.

Acquiring a game-sensitive, pragmatic understanding of the input state is essential to solve

both the macroplanning and microplanning challenges involved. Performing inadequately on

either of these challenges leads to the trap of generating common or dull language [42, 229],

that would not satisfy the communicative goal. We �nd that acquiring such an understanding

tabula rasa is too challenging for a typical attentional LSTM-based encoder-decoder model in-
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stantiating E2EN2PP, leading to the common response problem as anticipated, and consequently,

inferior performance to even template based baselines on both automatic and human metrics.

Based on our observations, we devise an alternative model that includes an additional Prag-

matic Interpretation Layer to discretely featurize the board states using a game library, essen-

tially backing o� to pragmatic game knowledge to viably declutter the input states, thereby

simplifying the understanding and overcoming the microplanning and macroplanning issues

observed. Consequently, the model is now able to outperform all baselines, including the

template-based one, on both automatic and human metrics.

The devised intervention in the E2EN2PP that needs to be done can be seen in Figure 8.1

Through a human study on predictions for a subset of the data that deals with direct move

descriptions, we observe that outputs from our models are rated similar to ground truth com-

mentary texts in terms of correctness and �uency.
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Figure 8.1: An illustration of how End-to-End Neural NLG Pseudo-Pipeline would work in action

for an actual generation task and input example, after incorporating the Intervention in Chapter

8. Here, the task is to summarize the given input news article to within 280 characters. Note

that this is a Pseudo-Pipeline, since the layers do not correspond to sub-tasks of NLG; moreover,

they cannot be learnt or updated independently. The speci�c intervention shown here is the

introduction of a Pragmatic Interpretation Layer that takes in the raw board states and featurizes

them into a collection of discrete game-pertinent features.

8.1 Introduction

A variety of work in NLP has sought to produce �uent natural language descriptions condi-

tioned on a contextual grounding. For example, several lines of work explore methods for de-

scribing images of scenes and videos [86], while others have conditioned on structured sources

like Wikipedia infoboxes [103]. In most cases, progress has been driven by the availability of

large training corpora that pair natural language with examples from the grounding [113]. One

line of work has investigated methods for producing and interpreting language in the context

of a game, a space that has rich pragmatic structure, but where training data has been hard

to come by. In this chapter, we introduce a new large-scale resource for learning to correlate

natural language with individual moves in the game of chess. We collect a dataset of more than
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298K chess move/commentary pairs across ≈ 11K chess games from online chess forums. To

the best of our knowledge, this is the �rst such dataset of this scale for a game commentary

generation task. We provide an analysis of the dataset and highlight the large variety in com-

mentary texts by categorizing them into six di�erent aspects of the game that they respectively

discuss.

Figure 8.2: Move commentary generated from our method (Game-aware neural commentary generation (GAC))

and some baseline methods for a sample move.

Automated game commentary generation can be a useful learning aid. Novices and experts

alike can learn more about the game by hearing explanations of the motivations behind moves,

or their quality. In fact, on sites for game a�cionados, these commentaries are standard features,

speaking to their interestingness and utility as complements to concrete descriptions of the

game boards themselves.

Game commentary generation poses a number of interesting challenges for existing ap-

proaches to language generation. First, modeling human commentary is challenging because

human commentators rely both on their prior knowledge of game rules as well as their knowl-

edge of e�ective strategy when interpreting and referring to the game state. Secondly, there

are multiple aspects of the game state that can be talked about for a given move — the com-

mentator’s choice depends on the pragmatic context of the game. For example, for the move

shown in Figure 8.2, one can comment simply that the pawn was moved, or one may comment

on how the check was blocked by that move. Both descriptions are true, but the latter is most

salient given the player’s goal. However, sometimes, none of the aspects may stand out as being

most salient, and the most salient aspect may even change from commentator to commentator.

Moreover, a human commentator may introduce variations in the way he or she chooses to talk
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Figure 8.3: A multi-move, single commentary example from our data. Here, the sequence of moves Ba4→ b5→
Nd6→ bxa4→ e5 is commented upon.

about these aspects, in order to reduce monotony in the commentary. This makes the dataset a

useful testbed for the content selection and referring expression sub-skills of NLG.

There has been some, albeit very limited, prior work which has explored game commentary

generation. [109, 195] have explored chess commentary generation, but for lack of large-scale

training data their methods have been mainly based on rules de�ned manually. [85] have ex-

plored commentary generation for the game of Shogi, proposing a two-step process where

salient terms are generated from the game state and then composed in a language model. In

contrast, given the larger amount of training data available to us, our devised model uses a train-

able neural architecture to predict commentaries given the game state. Our model conditions on

semantic and pragmatic information about the current state and explicitly learns to compose,

conjoin, and select these features in a recurrent decoder module. We perform an experimental

evaluation comparing against baselines and variants of our model that ablate various aspects

of our devised architecture. Outputs on the ‘Move Description’ subset of data from our �nal

model were judged by humans to be as good as human written ground truth commentaries on

measures of �uency and correctness.

8.2 Chess Commentary Dataset

In this section we introduce our new large-scale Chess Commentary dataset, share some statis-

tics about the data, and discuss the variety in type of commentaries. The data is collected

from the online chess discussion forum gameknot.com, that features multiple games self-

annotated with move-by-move commentary.

The dataset consists of 298K aligned game move/commentary pairs. Some commentaries
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Statistic Value

Total Games 11,578

Total Moves 298,008

Average no. of recorded steps in a game 25.73

Frequent Word Types
1

39,424

Rare Word Types 167,321

Word Tokens 6,125,921

Unigram Entropy 6.88

Average Comment Length (in #words) 20.55

Long Comments (#words > 5) 230745 (77%)

Table 8.1: Dataset and Vocabulary Statistics

Category Example

% in

data

Val

acc.

Direct Move

Description

An attack on the queen 31.4% 71%

Move

Quality

A rook blunder. 8.0% 90%

Comparative

At this stage I �gured

I better move my knight.

3.7% 77.7%

Planning /

Rationale

Trying to force a way to

eliminate d5 and

prevent Bb5.

31.2% 65%

Contextual

Game Info

Somehow, the game I

should have lost turned

around in my favor .

12.6% 87%

General

Comment

Protect Calvin , Hobbs 29.9% 78%

Table 8.2: Commentary texts have a large variety making the problem of content selection an important challenge

in our dataset. We classify the commentaries into 6 di�erent categories using a classi�er trained on some hand-

labelled data, a fraction of which is kept for validation. % data refers to the percentage of commentary sentences

in the tagged data belonging to the respective category.

are written for a sequence of few moves (Figure 8.3) while others correspond to a single move.

For the purpose of initial analysis and modeling, we limit ourselves to only those data points

where commentary text corresponds to a single move. Additionally, we split the multi-sentence

commentary texts to create multiple data points with the same chess board and move inputs.

What are commentaries about? We observe that there is a large variety in the commen-

tary texts. To analyze this variety, we consider labelling the commentary texts in the data with

a prede�ned set of categories. The choice of these categories is made based on a manual in-

spection of a sub-sample of data. We consider the following set of commentary categories (Also

shown in Table 8.2):

• Direct move description (MoveDesc
2
): Explicitly or implicitly describe the current

2
MoveDesc & ‘Move Description’ used interchangeably
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move.

• Quality of move (Quality
3
): Describe the quality of the current move.

• Comparative: Compare multiple possible moves.

• Move Rationale or Planning (Planning): Describe the rationale for the current move,

in terms of the future gameplay, advantage over other potential moves etc.

• Contextual game information: Describe not the current move alone, but the overall

game state — such as possibility of win/loss, overall aggression/defence, etc.

• General information: General idioms & advice about chess, information about player-

s/tournament, emotional remarks, retorts, etc.

The examples in Table 8.2 illustrate these classes. Note that the commentary texts are not

necessarily limited to one tag, though that is true for most of the data. A total of 1K comments

are annotated by two annotators. A SVM classi�er [153] is trained for each comment class,

considering the annotation as ground truth and using word unigrams as features. This classi�er

is then used to predict tags for the train, validation and test sets. For “Comparative” category, we

found that a classi�er with manually de�ned rules such as presence of word “better” performs

better than the classi�er, perhaps due to the paucity of data, and thus we use this instead . As

can be observed in Table 8.2, the classi�ers used are able to generalize well on the held out

dataset.

8.3 Game Aware Neural Commentary Generations (GAC)

Our datasetD consists of data points of the form (Si,Mi, Gi), i ∈ {1, 2, .., |D|}, where Si is the

commentary text for moveMi andGi is the corresponding chess game. Si is a sequence ofm to-

kens Si1, Si2, ..., Sim We want to model P (Si|Mi, Gi). For simplicity, we use only current board

(Ci) and previous board (Ri) information from the game. P (Si|Mi, Gi) = P (Si|Mi, Ci, Ri).

We model this using an end-to-end trainable neural model, that models conjunctions of fea-

tures using feature encoders. Our model employs a selection mechanism to select the salient

features for a given chess move. Finally a LSTM recurrent neural network [76] is used to gen-

erate the commentary text based on selected features from encoder.

3
Quality and ‘Move Quality’ used interchangeably
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Figure 8.4: The �gure shows some features extracted using the chess board states before (left)
and after (right) a chess move. Our method uses various semantic and pragmatic features of

the move, including the location and type of piece being moved, which opposing team pieces

attack the piece being moved before as well as after the move, the change in score by Stock�sh
UCI engine, etc.

8.3.1 Incorporating Domain Knowledge

Past work shows that acquiring domain knowledge is critical for NLG systems [124, 186], par-

ticularly data-to-text NLG systems where the data is . Commentary texts cover a range of

perspectives, including criticism or goodness of current move, possible alternate moves, qual-

ity of alternate moves, etc. To be able to make such comments, the model must learn about the

quality of moves, as well as the set of valid moves for a given chess board state. We consider the

following features to provide our model with necessary information to generate commentary

texts (Figure 8.4):

Move features fmove(Mi, Ci, Ri) encode the current move information such as which piece

moved, the position of the moved piece before and after the move was made, the type and

position of the captured piece (if any), whether the current move is castling or not, and whether

there was a check or not.

Threat features fthreat(Mi, Ci, Ri) encode information about pieces of opposite player at-

tacking the moved piece before and after the move, and the pieces of opposite player being

attacked by the piece being moved. To extract this information, we use the python-chess4
li-

brary

Score features fscore(Mi, Ci, Ri) capture the quality of move and general progress of the

game. This is done using the game evaluation score before and after the move, and average

rank of pawns of both the players. We use Stock�sh evaluation engine to obtain the game

4https://pypi.org/project/python-chess/
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evaluation scores.
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Figure 8.5: The �gure shows a model overview. We �rst extract various semantic and prag-

matic features from the previous and current chess board states. We represent features through

embedding in a shared space. We observe that feeding in feature conjunctions helps a lot. We

consider a selection mechanism for the model to choose salient attributes from the input at

every decoder step.

8.3.2 Feature Representation

In our simplest conditioned language generation model GAC-sparse, we represent the above

described features using sparse representations through binary-valued features. gsparse(Mi, Ci, Ri) =

SparseRep(fmove, fthreat, fscore)

For our full GAC model we consider representing features through embeddings. This has

the advantage of allowing for a shared embedding space, which is pertinent for our problem

since attribute values can be shared, e.g., the same piece type can occur as the moved piece as

well as the captured piece. For categorical features, such as those indicating which piece was

moved, we directly look up the embedding using corresponding token. For real valued features

such as game scores, we �rst bin them and then use corresponding number for embedding

lookup. Let E represent the embedding matrix. Then E[f jmove] represents embeddings of jth

move feature, or in general E[fmove] represents the concatenated embeddings of all move fea-

tures. Similarly,E(fmove, fthreat, fscore) represents concatenated embeddings of all the features.

5https://stockfishchess.org/about/

128

https://stockfishchess.org/about/


March 25,2022

8.3.3 Feature Conjunctions

We conjecture that explicitly modeling feature conjunctions might improve the performance.

So we need an encoder that can handle input sets of features of variable length (features such

as pieces attacking the moved piece can be of variable length). One way to handle this is by

picking up a canonical ordering of the features and consider a bidirectional LSTM encoder over

the feature embeddings. As shown in Figure 8.5, this generates conjunctions of features.

genc = BiLSTM
∗({E(fmove, fthreat, fscore))})

Here E() represents the embedding matrix as described earlier and BiLSTM∗
represents

a sequential application of the BiLSTM function. Thus, if there a total of m feature keys and

embedding dimension is d,E(fmove, fthreat, fscore) is matrix ofm∗d. If hidden size of BILSTM is

of size x, then genc is of dimensionality m ∗ x. We observe that di�erent orderings gave similar

performance. We also experimented with running k encoders, each on di�erent ordering of

features, and then letting the decoder access to each of the k encodings. This did not yield any

signi�cant gain in performance.

The GAC model, unlike GAC-sparse, has some advantages as it uses a shared, continuous

space to embed attribute values of di�erent features, and can perform arbitrary feature conjunc-

tions before passing a representation to the decoder, thereby sharing the burden of learning the

necessary feature conjunctions. Our experiments con�rm this intuition — GAC produces com-

mentaries with higher BLEU as well as more diversity compared to GAC-sparse.

8.3.4 Decoder

We use a LSTM decoder to generate the sentence given the chess move and the features g. At

every output step t, the LSTM decoder predicts a distribution over vocabulary words taking

into account the current hidden state ht, the input token it, and additional selection vector ct.

For GAC-sparse, the selection vector is simply an a�ne transformation of the features g. For

GAC model selection vector is derived via a selection mechanism.

ot, h
dec
t = LSTM(hdect−1, [concat(Edec(it), ct)])

pt = softmax(Wo[concat(ot, ct)] + bs)

where pt represents th probability distribution over the vocabulary, Edec() represents the de-

coder word embedding matrix and elements of Wo matrix are trainable parameters.

Selection/Attention Mechanism: As there are di�erent salient attributes across the dif-
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ferent chess moves, we also equip the GAC model with a mechanism to select and identify these

attributes. We �rst transform hdect by multiplying it with a trainable matrix Wc, and then take

dot product of the result with each gi.

a
(i)
t = dot(Wc ∗ hdect , genci )

αt = softmax(at)

ct =

i=|g|∑
i=1

α
(i)
t g

enc
i

We use cross-entropy loss over the decoding outputs to train the model.

8.4 Experiments

We split each of the data subsets in a 70:10:20 ratio into train, validation and test. All our

models are implemented in Pytorch version 0.3.1 [152]. We use the ADAM optimizer [93] with

its default parameters and a mini-batch size of 32. Validation set perplexity is used for early-

stopping. At test-time, we use greedy search to generate the model output. We observed that

beam decoding does not lead to any signi�cant improvement in terms of validation BLEU score.

We observe the BLEU [151] and BLEU-2 [228] scores to measure the performance of the

models. Additionally, we consider a measure to quantify the diversity in the generated outputs.

Finally, we also conduct a human evaluation study. In the remainder of this section, we discuss

baselines along with various experiments and results.

8.4.1 Baselines

In this subsection we discuss the various baseline methods.

Manually-de�ned template (TEMP) We devise manually de�ned templates [181] for ‘Move

Description’ and ‘Move Quality’ categories. Note that template-based outputs tend to be repet-

itive as they lack diversity — drawing from a small, �xed vocabulary and using a largely static

sentence structure. We de�ne templates for a �xed set of cases which cover our data. (For exact

template speci�cations, refer to Appendix B)

Nearest Neighbor (NN): We observe that the same move on similar board states often leads

to similar commentary texts. To construct a simple baseline, we �nd the most similar move
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NMCR from among training data points for a given previous (R) and current (C) board states

and move M . The commentary text corresponding to NMCR is selected as the output. Thus,

we need to consider a scoring function to �nd the closest matching data point in training set.

We use the Move, Threat and Score features to compute similarity to do so. By using a sparse

representation, we consider total of 148 Move features, 18 Threat features, and 19 Score features.

We use sklearn’s [154] NearestNeighbor module to �nd the closest matching game move.

Raw Board Information Only (RAW): The RAW baseline ablates to assess the importance

of our pragmatic feature functions. This architecture is similar to GAC, except that instead of

our custom features A(f(Ri, Ci)), the encoder encodes raw board information of current and

previous board states.

ARAW (Ri, Ci) = [Lin(Ri), Lin(Ci)]

Lin() for a board denotes it’s representation in a row-linear fashion. Each element of Lin()

is a piece name (e.g., pawn) denoting the piece at that square with special symbols for empty

squares.

8.4.2 Comment Category Models

As shown earlier, we categorize comments into six di�erent categories. Among these, in this

chapter we consider only the �rst three as the amount of variance in the last three categories

indicates that it would be extremely di�cult for a model to learn to reproduce them accurately.

The number of data points, as tagged by the trained classi�ers, in the subsets ‘Move Descrip-

tion’, ‘Move Quality’ and ‘Comparative’ are 28,228, 793 and 5397 respectively. We consider

separate commentary generation models for each of the three categories. Each model is tuned

separately on the corresponding validation sets. Table 8.3 shows the BLEU and BLEU-2 scores

for the devised model under di�erent subsets of features. Overall BLEU scores are low, likely

due to the inherent variance in NLG tasks such as dialog response generation and data-to-text

description (of which our task is an example) generation tasks, where even adequate outputs

sometimes do not match references due to many possible outputs being adequate for the same

input [146]. A precursory examination of the outputs for data points selected randomly from

the test set indicated that they were reasonable. Figure 8.6 illustrates commentaries generated

by our models through an example (a larger list of qualitative examples can be found in Ap-

pendix C).
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Figure 8.6: Outputs from various models on a test example from the MoveDesc subset.

Which features are useful? In general, adding Threat features improves the performance,

though the same is not always true for Score features. One reason for the importance of Threat

features might be that the change in value of a Threat feature often includes comment-worthy

events such as the king coming under check, or going out of check. Learning to detect the

activation and de-activation of a situation where one piece threatens another is challenging in

the absence of Threat features, since the piece being threatened and the piece which is threat-

ening may even both not be identical to the piece which was immediately moved. Making such

inferences would require the model to not just memorize all the piece positions but also, after

each move, to implicitly compute whether a threat is activated by iterating over all opposing

piece pairs.

The changes in Score features may often correspond to subtle changes later in the game

tree, and are perhaps unlikely to immediately trigger the use of speci�c phrases in resultant

commentary. Furthermore, for lot of cases where they do trigger use of speci�c phrases, this

might be due to activation or de-activation of threats, or some speci�c specialities of the move

(e.g., Castling) which is already explicitly captured by the Move and Threat features. This might

explain the observation that addition of Score features does not always improve performance.

Qual has higher BLEU scores than the other datasets due to smaller vocabulary and lesser

variation in commentary. As can be observed in Table 8.4, Threat features are useful for both

‘Move Quality’ and ‘Move Description’ subsets of data. Adding Score features helps for ‘Move

Quality’ subset. This intuitively makes sense since Score features directly encode proxies for

move quality as per a chess evaluation engine.

8.4.3 A Single Model For All Categories

In this experiment, we merge the training and validation data of the �rst three categories and

tune a single model for this merged data. We then compare its performance on all test sentences

in our data. COMB denotes using the best GAC model for a test example based on its original
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Dataset Features BLEU BLEU-2 Diversity

MoveDesc

TEMP 0.72 20.77 4.43
NN (M+T+S) 1.28 21.07 7.85

RAW 1.13 13.74 2.37
GAC-sparse 1.76 21.49 4.29
GAC (M+T) 1.85 23.35 4.72

Quality

TEMP 16.17 47.29 1.16
NN (M+T) 5.98 42.97 4.52

RAW 16.92 47.72 1.07
GAC-sparse 14.98 51.46 2.63

GAC(M+T+S) 16.94 47.65 1.01

Comparative

NN (M) 1.28 24.49 6.97
RAW 2.80 23.26 3.03

GAC-sparse 3.58 25.28 2.18
GAC(M+T) 3.51 29.48 3.64

Table 8.3: Performance of baselines and our model with di�erent subsets of features as per various

quantitative measures.

( S = Score, M= Move, T = Threat features; ) On all data subsets, our model outperforms the TEMP and

NN baselines. Among devised models, GAC performs better than GAC-sparse & RAW in general. For

NN, GAC-sparse and GAC methods, we experiment with multiple feature combinations and report only

the best as per BLEU scores.

class (e.g., Desc) and computing the BLEU of the sentences so generated with the ground truth.

GAC-all represents the GAC model learnt on the merged training data.

As can be seen from Table 8.5, this does not lead to any performance improvements. We

investigate this issue further by analyzing whether the board states are predictive of the type

of category or not. To achieve this, we construct a multi-class classi�er using all the Move,

Threat and Score features to predict the three categories under consideration. However, we ob-

serve accuracy of around 33.4%, which is very close to the performance of a random prediction

model. This partially explains why a single model did not fare better even though it had the

opportunity to learn from a larger dataset.

Category-aware model (CAT) We observed above that with the considered features, it is

not possible to predict the type of comment to be made, and the GAC-all model results are

better than COMB results. Hence, we extend the GAC-all model to explicitly provide with the

information about the comment category. We achieve this by adding a one-hot representation

of the category of the comment to the input of the RNN decoder at every time step. As can

be seen in the Table 8.5, CAT(M) performs better than GAC-all(M) in terms of BLEU-4, while

performing slightly worse on BLEU-2. This demonstrates that explicitly providing information
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Dataset Features BLEU BLEU-2 Diversity

MoveDesc

GAC (M) 1.41 19.06 4.32
GAC (M+T) 1.85 23.35 4.72

GAC (M+T+S) 1.64 22.82 4.29

Quality

GAC (M) 13.05 48.37 1.61
GAC (M+T) 14.22 49.57 1.54

GAC(M+T+S) 14.44 51.79 1.48

Comparative

GAC(M) 3.10 19.84 2.88
GAC(M+T) 3.51 29.48 3.64

GAC(M+T+S) 1.15 25.44 3.14

Table 8.4: Performance of the GAC model with di�erent feature sets. ( S = Score, M= Move, T = Threat

features; ) Di�erent subset of features work best for di�erent subsets. For instance, Score features seem

to help only in the Quality category. Note that the results for Quality are from 5-fold cross-validation,

since the number of datapoints in the category is much lesser than the other two.

Dataset Features BLEU BLEU-2 Diversity

All

COMB (M) 2.07 20.13 4.50
COMB (M+T) 2.43 25.37 4.88

COMB (M+T+S) 1.83 28.86 4.33

All

GAC-all(M) 1.69 20.66 4.67
GAC-all(M+T) 1.94 24.11 5.16

GAC-all (M+T+S) 2.02 24.70 4.97

All CAT (M) 1.90 19.96 3.82

Table 8.5: The COMB approaches show the combined performance of separately trained models on the

respective test subsets.

about the comment category can help the model.

8.4.4 Diversity In Generated Commentaries

Humans use some variety in the choice of words and sentence structure. As such, outputs

from rule based templates, which demonstrate low variety, may seem repetitive and boring.

To capture this quantitatively, and to demonstrate the variety in texts from our method, we

calculate the entropy [211] of the distribution of unigrams, bigrams and trigrams of words in

the predicted outputs, and report the geometric mean of these values. Using only a small set of

words in similar counts will lead to lower entropy and is undesirable. As can be observed from

Table 8.3, template baseline performs worse on the said measure compared to our methods for

the ’MoveDesc’ subset of the data.
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Question GT

GAC

(M)

GAC

(MT)

GAC

(MTS)

GAC

-sparse

TEMP NN

Is commentary correct for the

given move? (%Yes)

70.4 42.3 64.8 67.6 56.3 91.5 52.1

Can the move be inferred from

the commentary? (%Yes)

45.1 25.3 42.3 36.7 40.8 92.9 42.3

Fluency (scale of (least)1 - 5(most) )

Mean (Std. dev.)

4.03

(1.31)

4.15

(1.20)

4.44

(1.02)

4.54

(0.89)

4.15

(1.26)

4.69

(0.64)

3.72

(1.36)

Table 8.6: Human study results on MoveDesc data category. Outputs from GAC are in general better than

ground truth, NN and GAC-sparse. TEMP outperforms other methods, though as shown earlier, outputs

from TEMP lack diversity.

8.4.5 Human Evaluation Study

As discussed in the qualitative examples above, we often found the outputs to be good - though

BLEU scores are low. BLEU is known to correlate poorly [146, 182, 242] with human rele-

vance scores for NLG tasks. Hence, we conduct a human evaluation study for the best 2 neural

(GAC,GAC-sparse) and best 2 non-neural methods (TEMP,NN).

Setup: Speci�cally, annotators are shown a chess move through previous board and result-

ing board snapshots, along with information on which piece moved (a snapshot of a HIT
6

is

provided in the Appendix D). With this context, they were shown text commentary based on

this move and were asked to judge the commentary via three questions, shortened versions of

which can be seen in the �rst column of Table 8.6.

We randomly select 100 data points from the test split of ‘Move Description’ category and

collect the predictions from each of the methods under consideration. We hired two Anglo-

phone (Lifetime HIT acceptance % > 80) annotators for every human-evaluated test example.

We additionally assess chess pro�ciency of the annotators using questions from the chess-QA

dataset by [32]. Within each HIT, we ask two randomly selected questions from the chess-QA

dataset. Finally we consider only those HITs wherein the annotator was able to answer the

pro�ciency questions correctly.

Results: We conducted a human evaluation study for the MoveDesc subset of the data. As

can be observed from Table 8.6, outputs from our method attain slightly more favorable scores

compared to the ground truth commentaries. This shows that the predicted outputs from our

model are not worse than ground truth on the said measures. This is in spite of the fact that

6
Human Intelligence Task
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the BLEU-4 score for the predicted outputs is only ∼ 2 w.r.t. the ground truth outputs. One

reason for slightly lower performance of the ground truth outputs on the said measures is that

some of the human written commentaries are either very ungrammatical or too concise. A

more surprising observation is that around 30% of human written ground truth outputs were

also marked as not valid for given board move. On inspection, it seems that commentary often

contains extraneous game information beyond that of move alone, which indicates that an ideal

comparison should be over commentary for an entire game, although this is beyond the scope

of the current work.

The inter-annotator agreement for our experiments (Cohen’s κ [34]) is 0.45 for Q1 and 0.32

for Q2. We notice some variation in κ coe�cients across di�erent systems. While TEMP and

GAC responses had a 0.5-0.7 coe�cient range, the responses for CLM had a much lower coe�-

cient. In our setup, each HIT consists of 7 comments, one from each system. For Q3 (�uency),

which is on an ordinal scale, we measure rank-order consistency between the responses of the

two annotators of a HIT. Mean Kendall τ [88] across all HITs was found to be 0.39.

To measures statistical signi�cance of results, we perform bootstrap tests on 1000 subsets

of size 50 with a signi�cance threshold of p = 0.05 for each pair of systems. For Q1, we observe

that GAC(M), GAC(M+T) and GAC(M+T+S) methods are signi�cantly better than baselines NN

and GAC-sparse. We �nd that neither of GAC(M+T) and GT signi�cantly outperform each

other on Q1 as well as Q2. But we do �nd that GAC(M+T) does better than GAC(M) on both Q1

and Q2. For �uency scores, we �nd that GAC(M+T) is more �uent than GT, NN , GAC-sparse,

GAC(M). Neither of GAC(M) and GAC(M+T+S) is signi�cantly more �uent than the other.

8.5 Related Work

Data-to-text NLG research has a long and rich history, with systems ranging from completely

rule-based [33] to learning-based ones [29, 185, 187], which have had both practical successes

[187] and failures [185]. Recently, there have been numerous works that propose text gener-

ation given input information such as structured records, biographies [103], recipes [91, 247],

etc. A key di�erence between generation given a game state compared to these inputs is that

the game state is an evolving description at a point in a process, as opposed to recipes (that

are independent of each other), records (which are static) and biographies (which are one per

person, and again independent). Moreover, our devised method e�ectively uses various types

of semantic and pragmatic information about the game state.

In this chapter, we have introduced a new large-scale data for game commentary genera-
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tion. The commentaries cover a variety of aspects like move description, quality of move, and

alternative moves. This leads to a content selection challenge, similar to that noted in [242]. Un-

like [242], our focus is on generating commentary for individual moves in a game, as opposed

to game summaries from aggregate statistics as in their task.

One of the �rst NLG datasets was the SUMTIME-METEO [187] corpus with ≈ 500 record-

text pairs for technical weather forecast generation. Liang et al [108] worked on common

weather forecast generation using the WEATHERGOV dataset, that has≈ 10K record-text pairs.

A criticism of WEATHERGOV is that weather records themselves may have used templates and

rules with optional human post-editing. There have been prior works on generating commen-

tary for ROBOCUP matches [29, 134]. The ROBOCUP dataset, however, is collected from 4

games and contains about 1K events in total. Our dataset is two orders of magnitude larger

than the ROBOCUP dataset, and we hope that it provides a promising setting for future NLG

research.

8.6 Conclusions

In this chapter, we curate a dataset for the task of chess commentary generation and devise

methods to perform generation on this dataset. We analyze our task and initial baseline model’s

performance in terms of the challenges it poses along CNLP. We �nd that our initial base-

line model, that is a typical attentional LSTM-based encoder-decoder framework instantiating

E2EN2PP, is found to lapse into merely generating input-dependent common responses, un-

derperforming template-based baselines. The model responses rarely choose the pertinent and

interesting pieces as well as inter-piece relationships to talk about given the current move. They

even fail to simply describe the piece that moved and its initial and �nal locations, as evinced

by their underperforming even the template-based baseline which follows that simple strategy.

This indicates their de�cient performance on the content selection subskill. Furthermore, even

when the responses choose the adequate piece (s) movements, and inter-piece relationships to

describe, they seldom employs rich expressions such as joining the attack, develops his position,

putting in check etc., indicating the model’s de�ciency at referring expression generation

We posited that the aforementioned de�ciencies were due to the model’s inability to under-

stand the game states in the larger pragmatic context of the game, and devise a method that

directly provides knowledge about game pragmatics to its decoder via backing o� to a game-

library based discrete featurization introduced as an Intervention in the form of a Pragmatic

Interpretation Layer overcomes these challenges, resulting in a viable commentary generator
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outperforming all the baselines, including the template-based one. The devised Intervention to

E2EN2PP, that causes a departure from the end-to-end nature, is illustrated in Figure 8.1.

Our devised method e�ectively utilizes information related to the rules and pragmatics of

the game. A human evaluation study judges outputs from the devised methods to be as good

as human written commentary texts for the ‘Move Description’ subset of the data.

Subsequent work [215] has proposed reinforcement learning based game-playing agents

that learn to play board games from scratch, learning end-to-end from both recorded games

and self-play. An interesting point to explore is whether such pragmatically trained game state

representations can be leveraged for the task of game commentary generation.

8.6.1 Broader Takeaways

Whenever there is a sharp disparity between the granularity at which the input (or the input

portion of the communicative goal) states information and the granularity at which the output

is expected to operate, one expects a gap between the understanding module and the generation

module’s representations, and the generation module has the added burden of learning to map

the more disparate than usual understanding representation to its own representation.

If �lling this gap requires extensive acquisition of commonsense or other forms of knowl-

edge (such as knowledge which can only be acquired through gameplay as in our case), it is

possible that the above mappings may be de�cient. In such a case, to perform macroplanning

tasks such as content selection viably (which may otherwise be obstructed), it becomes neces-

sary to devise some way of converting the input to the right granularity by incorporating this

knowledge either completely or through some heuristics, thus bridging the granularity gap.

Consider the example of generating game summary commentary for sports such as soccer

and American football, given only the various summary scores and highlights tables generated

in aggregate at the end of the game. These tables may contain a wide, heterogenous range

of information, with only limited lexical interpretation o�ered by the row and column names,

which themselves are domain-speci�c terms such as Home/Away, Possession, including even

acronyms such as GA (Goals Attempted) etc. Di�erent parts of this information may become

pertinent for di�erent games. For example, Away games are generally harder for visiting teams,

and even a closely fought draw or loss may entail not entirely negative commentary towards

the visiting team e.g, In a hard fought game, . . . , In a close encounter in harsh conditions, . . . . A

NLG model which attempts to learn the game summary commentary task may have a hard time

learning to select, tabula rasa, the right content by decluttering and combining the appropriate
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row and column tuples. However, if one were to instead introduce a Interpretation layer, like

in this chapter, which �rst does either or both of the below pre-processing steps would greatly

ease the model’s ability to learn to content select and refer to game information appropriately.

1. Create a large number of game-pertinent, discrete 0-1 or multi-valued features, which it

extracts from the game tables. e.g., a 0-1 feature can be Away games lost with a margin

of only 2 goals

2. Perform preliminary lexicalization which uses simple rules to convert the table cells into

simple lexical statements e.g., Team X had a formation of 4 defenders, 4 mid�elders and 2

strikers. These statements can be included as additional parts of the input.

Appendix A: Additional Data Examples

Appendix B: Additional details for methods

Templates

• Move Description: For the Move Description category, we consider following templates:

1. Capturemoves : [PlayerMoved] captures the [CapturedPiece] at [FinalSqare]

using the [PieceMoved] at [InitialSqare].

2. Non-Capture moves: [PlayerMoved] moves the [PieceMoved] from [Initial-

Sqare] to [FinalSqare].

3. Castling moves: [PlayerMoved] does a castling.

For moves which lead to a check in the resultant board state, an additional putting the

king in check is added to the template. [PlayerMoved] (Black/White), [InitialSqare],

[FinalSqare], [PieceMoved] are �lled in based on the move description on the input

side.

• Move Quality: Based on the move score ( as calculated by the chess engine Stock�sh) > θ

or < θ, one of the following two is generated:

1. A good move.

2. A bad move. The threshold θ is found by tuning it on the validation set to maximize

BLEU. We start from θ = 0.

139



March 25,2022

Text Categories

Unpins and defends the knight , but it

does n’t matter , as the time is ripe .

Desc

He gets fed up and exchanges Queen for Rook . Desc

Rxc3 , I just retake with my queen , whilst if he

attempts defense with the bishop , then after 17.Bd2 ,

Ne4 , 18.Rxc3 , Nxg3 , 19.Rxc6 , Nxh1 , I ’ve won a rook outright .

Desc,Rationale

Preparing to castle , and threatening

now white ’s e pawn for real.

Desc

Simply getting my rook o� that dangerous diagonal

, and protecting the b pawn .

Desc

I throw in a check Desc

Threatening mate with Qxh2 Desc,Quality

A punch drunk move ! Quality

This is not the best move. Quality

The most logical move. Quality

This move is dubious. Quality

The check gains time to support the advance of the a-paw Desc,Quality

maybe Ke1 was better Rationale

I did n’t want to retreat the N and I rejected 11 . Rationale

I wish to both defend the pawn , and threaten indirectly the

black queen , gaining a tempo

Rationale

it would suite me better if my opponent made a queenside castling , since

then my advanced pawn on the d-�le would assist in a future attack on the king ’s position .

Comparative

but better would be nd2 to get the knight in the game , the queen rook , too . Comparitive

i think it would have been better to play nxe5 and maintain a material advantage . Comparitive

although not as e�ective as the bishop move , even 10.0-0-0 is better than the text ,

though 10 ... bg4 would have been very nasty .

Comparitive

�anchettoing , so that when black does complete his development , his b will be on a better diagnol . Comparitive

He doesn’t notice that his Knight is hanging ... GameInfo

Now of course my forces are anchored around the pawns on e3 and h5 , and the black rook

loses his hope of penetrating the white position on the e-�le

GameInfo

Well, now the game will get interesting soon GeneralInfo

He tries his trick , which of course is noticed GeneralInfo

This is often what I will do , when I ’m playing white. GeneralInfo

Table 8.7: Some commentary texts from each of the six categories. The Categories column lists

those into which the example falls. As pointed out earlier, the category labels are not exclusive

i.e., a text can belong to multiple categories, though texts with more than one category are few

in our dataset. (’Desc’ is shor for ’Move Description’)
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Appendix C: Qualitative examples

Some qualitative examples.

Figure 8.7: Example output 1: Move description subset of data.

Figure 8.8: Example output 2: Move description subset of data.
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Figure 8.9: Example output 3: Move description subset of data.

Figure 8.10: Example output 4: Move description subset of data.

Figure 8.11: Example output 5: Move description subset of data.

Figure 8.12: Example output 6: Move description subset of data.
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Figure 8.13: Example output 7: Move description subset of data.

Figure 8.14: Example output 8: Move description subset of data.
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Figure 8.15: Example output 1: Move quality subset of data.

Figure 8.16: Example output 2: Move quality subset of data.

Figure 8.17: Example output 3: Move quality subset of data.

Figure 8.18: Example output 4: Move quality subset of data.
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Figure 8.19: Example output 5: Move quality subset of data.

Figure 8.20: Example output 6: Move quality subset of data.

Figure 8.21: Example output 7: Move quality subset of data.
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Figure 8.22: Example output 1: Comparative subset of data.

Figure 8.23: Example output 2: Comparative subset of data.

Appendix D: Additional information on AMT experiment

Figure 8.24: Example output 3: Comparative subset of data.
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Figure 8.25: AMT (Amazon Mechanical Turk) sample HIT (Human Intelligence Task): Part 1 of

2 : Two chess pro�ciency questions are asked at beginning of a HIT
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Figure 8.26: AMT (Amazon Mechanical Turk) sample HIT (Human Intelligence Task): Part 2 of

2: 7 sets of questions are asked to judge quality of generated text. Each of the seven texts is

output from a di�erent method.
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Figure 8.27: Commentary text: I develop my bishop to the queen .
An example instance where output commentary from our method was marked as not valid for

the given chess move

Checking chess pro�ciency of annotators

Our pro�ciency test questions are chosen from a subset of questions by [32]. Each question

consists of a chess board and a question about the board con�guration or game situation. The

paper formulates a range of question types such as enumerating pieces of a type, enumerating

pieces of a player, whether one piece threatens another, and whether the con�guration corre-

sponds to a checkmate or stalemate. For simplicity we stick to only those question types that

have binary answer response.

We classify the question types into Easy and Hard question types. Each annotator is pre-

sented with one Easy and one Hard question at the start of a HIT.
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Chapter 9

Macro-Level Controllable Generation

based on Elements of Narrativity: The

Narrative Reordering Problem

(AAAI 2022)

[New Task][Evaluation]

It is thus the narrative, and that alone,

that informs us here both of the events

that it recounts and of the activity that

supposedly gave birth to it. In other

words, our knowledge of the two (the

events and the action of writing) must be

indirect, unavoidably mediated by the

narrative discourse, in as much as the

events are the very subject of that

discourse and the activity of writing

leaves in it traces, signs or indices that

we can pick up and interpret

Gerard Genette, Narrative Discourse, 1980

Narratology and its aspects as an axis of variation are understudied in NLP, as highlighted
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recently in [162] . For NLG, narrative aspects such as e.g., narrative order, focus, person of

the narrator, omniscience of the narrator etc, also variously called narratological variables, or

elements of narrativity, can provide a rich source of control goals around which control tasks

can be framed to better understand the macroplanning skill of NLG architectures.

Many implicit inferences can be drawn at each point by a reader while they are reading a

text, depending on how it is structured, that can critically impact the text’s evolving interpreta-

tion and meaning in the reader’s mind. One such macro-structural aspect present in text with

an underlying chronology of events (i.e., a “story") as its background, is the order of their pre-

sentation. For narratives or stories, this is known as the narrative order. Reordering a narrative

can impact the temporal, causal, event-based, and other inferences readers draw from it, that

in turn can have strong e�ects both on its interpretation and interestingness.

In this chapter, we de�ne and investigate the task of Narrative Reordering (NAREOR) where

the communicative goal involves rewriting a given story in a di�erent narrative order while

preserving its plot. A NLG system that can rewrite the story in a di�erent narrative order such

that it retains its coherence will also ensure adequate interpretation and understanding by the

reader. We present a dataset, NAREORC, with human rewritings of stories within ROCStories in

non-linear orders, and conduct a detailed analysis of it. Further, we devise novel task-speci�c

training methods with suitable evaluation metrics. We perform experiments on NAREORC

using state-of-the-art large, pretrained NLG models such as BART and T5 and conduct extensive

automatic and human evaluation of their outputs. We demonstrate that although our models

can perform decently, NAREOR is a challenging task with potential for further exploration, with

a signi�cant gap still left to bridge between model and human performance. We also investigate

two applications of NAREOR: generation of more interesting variations of stories and serving

as adversarial sets for temporal/event-related tasks, besides discussing other prospective ones,

such as for pedagogical setups related to language skills like essay writing and applications to

medicine involving clinical narratives.

9.1 Introduction

From the onset of language, storytelling has been crucial to the transmission of knowledge

[176]. It has been well-established that readers remember only an abstract representation of

stories [203]. Before the printing press, classes engaged with oral teaching of scriptures, such

as rabbis, underwent extensive training to reproduce them with no distortion [17]. Formally

analyzing story structure commenced with the ancients, through works like Aristotle’s Poetics
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Figure 9.1: Example of our task and dataset, with original input story S on the left, target

narrative order πi′ on the top, and human rewritten story S ′ on the right.

[71]. These studies led to the concept of a narrative, distinct from story events.

For a story, there are two orders: the chronological order of events as they happened and

their order as presented in text. These have been analyzed under di�erent names [166]. We

refer to them as story order and narrative order, or story and narrative, respectively. Genette

[66] enlists typical orders observed in writing. A linear order narrates events in same sequence

as story order. The in medias res order starts with events in the middle, goes back to the start,

then proceeds to the end. Changing from near-linear to more “interesting" orders is prevalent in

cinema, e.g., The Imitation Game starts with Turing’s post-WWII 1951 interrogation. Memento

and Naked Lunch are known for their esoteric narrative orders - loosely described as retrogade

(reverse of linear) and syllepsis (lacking chronological logic), respectively.

Morgan [140] explains how narratives surpass “mere chronicle". Narrative orders of pre-

senting materials in scienti�c explanations directly a�ects how researchers interpret and un-

derstand them since the order implies not only temporal but other inferences about causality,

processes of change, etc. Narrative order can thus in�uence model explainability, especially for

explanation generation [175], a recent area-of-interest [238].

In this work, we do not delve into the complex and somewhat subjective question of which

narrative order is most suitable or “interesting". We focus on how a given story in linear nar-

rative order, i.e., story order, can be rendered in a speci�ed, non-linear, target narrative order

that di�ers from the story order while being still interpretable and preserving plot. We call this

Narrative Reordering, or NAREOR. To the best of our knowledge, we are the �rst to de�ne and

investigate this task in a modern, machine learning-based setup.
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There exists prior work which has addressed problems of a similar nature. Montfort [139]

tries generating �ction narratives from basic existent-event info with a special focus on narra-

tive order, using a rule and planning based approach. Unlike our work, their rule-based system

does not involve learning. Moreover, being generation in a given narrative order from unstruc-

tured story elements rather than reordering and rewriting an existing story, their setting does

not require solving challenges such as disentangling events from stories which are inherent in

NAREOR.

The reordering portion of NAREOR can be formalized as follows: Formally, NAREOR in-

volves converting a story S with sentences s1, s2, ..., sn to a reordered, rewritten story S ′ with

sentences s′1, s
′
2, ..., s

′
n according to a given target narrative order πi′ . πi′ is a permutation

{πi′ |πi′ : i′ → f(i′); 1 ≤ i′ ≤ n; f(i′) = i} mapping from target sentence
1

indices i′ to

original sentence indices i, where f is a one-to-one and onto function from {1, 2 . . . n} to itself.

In practice, we write πi′ as the sequence {i = f(i′)}i′=ni′=1 (f and i′ become implied).

NAREOR’s challenges are evident from the example in Figure 9.1. Simply reordering sen-

tences is far from su�cient, as rewritten text must be adjusted to handle coreference, tense, and

other discourse dependencies. Reichenbach times [178] refer to the speech time, event time and

reference time of an event as it appears in a story. These refer to the story times when the event

is spoken about (ST), when the event actually happened (ET), and the reference point (RT) with

respect to which it is spoken about. As an example, consider the sentence "By this time three

years ago, it was already two years past graduation". For the “graduation" event, the event time

is �ve years ago, the reference time is three years ago, and the speech time is now. Narrative

order a�ects tense since it can change 2 of these 3 Reichenbach times [178] — the speech and

reference times. NAREOR involves pinpointed and critical edits; a single missed or incorrect

edit can result in an entirely di�erent or invalid plot. Since πi′ can be seen as a control, NAREOR

is a controllable generation task (see §9.9 for discussion).

NAREOR is also a novel form of story-level paraphrasing and can be used to generate more

interesting variations of stories (§9.5.1). Outputs can also serve as challenge sets for temporal

or event-based tasks such as sentence ordering to assess the temporal reasoning capabilities of

models (§9.6). NAREOR can also be potentially useful for pedagogical setups related to language

skills such as essay writing, and applications to medicine involving clinical narratives (§9.6).

To complement NAREOR, we present a dataset, NAREORC, with human rewritings of sto-

ries from ROCStories [141] in non-linear orders. We conduct a thorough analysis, examining

1
For simplicity, we assume narrative to break up into sentence units. Our task is still very challenging as

shown through this chapter.

154



March 25,2022

various ways humans modify the text when reordering (§9.2). We �nd that, amongst others,

NAREOR requires models to have the ability to perform four challenging types of rewrites,

which we also refer to as change types.

1. Ellipsis: Ellipsis refers to the common phenomenon of excluding words or phrases to

prevent staid repetition at a target position, when they have already occurred once at a

reference position in the proximal context and their re-occurrence at the target position

can be inferred obviously by a reader. E.g., John had an icecream sundae. Mary did too.. In

the mentioned example, “did too" replaces or elides “had an icecream sundae", which is the

inferred meaning. Since NAREOR requires rewriting the story in a new, target narrative

order, the reference position may possibly no longer remain within context proximal to

the target position. As a result, the erstwhile omitted phrase would have to be explicitly

written out while rewriting for the target narrative order.

2. Tense: As we already touched upon in our discussion on Reichenbach times previously

in this chapter, NAREOR can often require performing signi�cant tense changes.

3. Timexes: Narratives which are linear i.e, in the story order, sometimes require use of

time expressions to explicitly indicate the quantum or ranges of duration between con-

secutive events. For example, like in “John had a heart attack. In an hour, he was dead".

However, they seldom require inde�nite time expressions such as “After a while," and

“Before that," etc, since the order of occurrence itself largely clari�es the order in which

events happen relative to each other. However, while rewriting for a target narrative

order di�erent from story order, this property no longer holds, and the narrative has

to introduce and rely on such inde�nite time expressions to ensure readers continue to

interpret the order of occurrence of events correctly.

4. Coreference: Nominal and pronominal referring expressions are often used to refer to

the later mentions of an entity in a coreference mention chain, after they have been al-

ready named explicitly earlier in the discourse. However, the relative order of occurrence

of these mentions within the discourse may change in the speci�ed target narrative order,

with the latter mentions potentially even preceding the named mentions. When this hap-

pens, it becomes necessary to rewrite these pronominal and nominal mentions to more

explicit, named mentions to prevent ambiguity and ensure a correct and plot-preserving

interpretation on the part of the reader.

Examples of rewrites pertaining to each of these types can be found in Table 9.1.

We perform experiments with BART, T5, and GPT-2 on NAREORC using novel, task-motivated

155



March 25,2022

training methods we devise (§9.3). We evaluate our models with both an automatic and human

evaluation along with qualitative analysis (§9.5). We demonstrate that our devised training

methods are e�ective but have room for further improvement. We illustrate that NAREOR is

indeed a challenging task with potential for further exploration.

9.2 Dataset: NAREORC

9.2.1 Dataset Construction

Source Corpus: ROCStories has ≈ 98.5K �ve-sentence English stories (see Table 9.1 for ex-

amples). For the dev and test splits, each example contains a four-sentence story pre�x with

a one-sentence coherent and incoherent ending. We treat the coherent endings as the �fth

sentences for NAREORC’s dev and test stories.

Assigning Target Narrative Orders: The target narrative order πi′ is not part of the ROC-

Stories input. We devise a randomized procedure to assign a reasonable πi′ for each example.

We sample 3 permutations from the set of non-identity n!-1 permutations.
2

We �nd Kendall τ

correlations [88] between identity permutation In, {1,2,3,4,5}, and each of the three permuta-

tions, retaining the lowest as πi′ . We prefer this to sampling at random because we want our

examples to be su�ciently non-trivial w.r.t. the task.

Supervised & Unsupervised Splits: We set aside 600, 200, 200 stories from train, dev, and

test splits of ROCStories. These act as NAREORC’s trainSup, devSup, and testSup splits, for

which we collect human references. Remaining stories in each ROCStories split are retained as

trainUnsup, devUnsup, and testUnsup of size 95161, 1671, 1671.

Human Annotation: For trainSup and devSup, we annotate one reference per example. For

testSup, we collect two each to help reference-based metrics. We conduct our study on AMT. To

understand task di�culty, we ask a “Hardness" question with options VeryEasy, Easy, Moderate,

Hard, VeryHard. On average, annotators found ≈70% of rewritings to be Moderate or Hard,

demonstrating that NAREOR is quite di�cult even for humans. More details in §9.10.

2
In our case, n = 5 as we experiment with ROCStories.
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9.2.2 Dataset Analysis

Overall Statistics

We �nd human-rewritten stories S ′ are ≈1.2x as long as input stories S on average in words

and characters. We expect some increase given the narrative reordered story favors resolution

of sentence-order dependent elements like ellipses (s4 and s′4 in Figure 9.1) and pronouns (s3

and s′2 in Figure 9.1) to explicit forms. It also requires insertion of time expressions (e.g., Before

that, 3rd row, Table 9.1) to clarify the now disrupted �ow.

Unique n-gram ratio URn(S) is the fraction of unique n-grams of length n in S. We observe

all three mean URs (n = 1, 2, 3) to decrease from input to reference story. UR1: 0.692→0.669,

UR2: 0.940→0.931, UR3: 0.989→0.984. Increased n-gram repetition could have reasons similar

to length increase, causing cross-sentence repetition. Figure 9.1 demonstrates this: S only has

one instance of money. Conversion of inherit any of it (s3)→ inherit any of the money (s′2) and

enough to take time (s4)→ enough money to take some time (s′4), among other changes, results

in four in S’.

How Verb Forms Change

We note changes in occurrence distribution across verb-related pos tags from S to S ′ using

NLTK’s pos tagger. Gerund fraction (pos=VBG) (e.g., I like playing) increases 7.7%→9.5%. Past

participle fraction (pos=VBN) (e.g., He had broken it) ≈ doubles, 6.5%→12.4%. Past tense frac-

tion (pos=VBD) (e.g., He broke it) decreases 60.9%→54.6%. Other verb-related pos fractions

remain fairly constant. Increase in past participle can be explained by frequent conversion to

past perfect tense during reordering (e.g., parents passed away→parents had passed away in

Figure 9.1).

How Narrative Reordering Alters Sentences

We look at corresponding sentence pairs {si, s′i′} in each story, speci�cally 4 linguistic change

types — ellipsis, tense, time expressions (timexes), coreference. We tried detecting these using

o�-the-shelf tools, and did not �nd any for ellipsis. Timex detectors like SUTime [27] only mark

strict timexes (e.g., last Sunday) but not others (e.g., before midsems). We hence hand-annotate

these four for each {si, s′i′} per testSup example. These are further described in Table 9.1. We

�nd over half (51.5%) the examples show ≥3 of 4 change types at once, and 89.5% show ≥2.

This shows that NAREOR requires performing di�erent changes in tandem.
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Change Type Story Examples with Changes Highlighted

Ellipsis

(Sent: 5.7%)

(Stor: 27.5%)

S: 1. All of the Ross family has red hair, except Henry. 2. Henry has blonde hair that is very curly.

3. Henry’s father often teases Henry’s mother about the mailman. 4. The mailman has blonde,

curly hair, but he is very ugly. 5. His dad’s teasing makes Henry feel bad. ; πi′ : {1, 5, 4, 2, 3}
S’: 1. All of the Ross family has red hair, except Henry. 2. His dad’s teasing about the mailman
makes Henry feel very bad. 3. This is because the mailman has blonde, curly hair, but he is very

ugly. 4. Henry also has blonde hair that is very curly. 5. Henry’s father often teases Henry’s

mother about the mailman.

Tense

(Sent: 19.1%)

(Stor: 64.0%)

S: 1. Sam bought a new SUV. 2. It was all wheel drive. 3. He �gured he would take it o� road. 4.
He hit a few hard bumps and broke his suspension. 5. Sheepishly, he brought it to the dealership

for repair. ; πi′ : {2, 3, 5, 1, 4}
S’: 1. Sam’s SUV was an all wheel drive. 2. He thought he could take it for a spin o� road. 3.

Embarrassed by the outcome of his drive, Sam took the car to the dealership for repair. 4. He had

just bought the SUV. 5. The car had hit a few hard bumps and the suspension broke when Sam took
it o� road.

Timexes

(Sent: 34.0%)

(Stor: 85.5%)

S: 1. There was once a kitten that did not have a home. 2. The poor kitten walked around cold and
hungry. 3. One day, a nice lady let the kitten into her home. 4. The woman gave the kitten food

and a bed. 5. The kitten was happy to be adopted. ; πi′ : {4, 2, 5, 1, 3}
S’: 1. A woman gave a home to a cat. 2. Before that it was cold and hungry. 3. It made the cat

happy to have a home. 4. The little cat originally was homeless. 5. But in the end, it met the nice

woman and she let it in.

Coreference

(Sent: 20.7%)

(Stor: 71.5%)

S: 1. Jimmy wandered around the city looking for a place for a soda. 2. Before he knew it, he was

in an unfamiliar area. 3. He was scared of strangers and didn’t want to ask anyone. 4. Soon a

policeman came by and asked if he was lost. 5. He told him that he was lost. ; πi′ : {5, 4, 2, 1, 3}
S’: 1. Jimmy told a police o�cer that he was lost. 2. He was lucky the police showed up in the �rst

place. 3. He had no idea where he was. 4. He had wandered o� when trying to �nd somewhere

to buy a soda. 5. It was pretty terrifying being all alone in a mysterious area with strangers.

Table 9.1: Sentence pairs in testSup stories are annotated for 4 linguistic change types common in

NAREORC. Sent denotes % of sentence pairs showing that change type. Stor denotes story pairs (S, S′)
where ≥ one sentence pair shows that change type.

9.3 Methodology

9.3.1 Training Methods

We introduce two task-speci�c training methods.

NAR-denoise (NAR-d)

This is partially inspired by how humans rewrite; a common approach is to �rst reorder sen-

tences naively (simply swap positions), then make other changes. NAR-d attempts to mimic

this, learning to convert from naive orderings to high-quality text. It involves two stages of

model training.

1. Denoise-1S: Stage 1 is unsupervised training through story-level denoising. We use train-
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Unsup without human-written reorderings, and simulate them using the original human-written

ROCStories (the outputs during training). Deletion and swapping of tokens are used to create

inputs from these stories that simulate naive reorderings. This noising aims to emulate the

reverse of the content editing that occurs during NAREOR. Speci�cally, we randomly delete

12.5% of tokens and swap another 12.5%. We found human-rewritten stories were, on aver-

age, in combination of token length (longer) and swappings,≈25% di�erent from the originals.

We split this between deletion and swapping to approximate naively-reordered stories. Story

sentences S are �rst reordered as per πi′ to produce S ′naive, then each is edited to �t the new

narrative. We swap tokens as humans often swap words like coreferent mentions based on

how the narrative order changes. Hence, this stage learns to denoise text by converting noised

versions to human-written text.

2. Denoise-2S: The second stage is supervised training atop the model above. The inputs are

the 600 original stories in trainSup, with sentences naively reordered as per target narrative

order πi′ to S ′naive, and the outputs are the human rewritings of these. The model learns to

further translate from naively-reordered text to �uent human-written text.

NAR-reorder (NAR-r)

Unlike NAR-d, NAR-r models themselves handle reordering given the target order rather than

naive reordering beforehand.

• Input Encoding Scheme: We describe how the task input {S,πi′} is encoded as a token

sequence for both Stage-1 and 2 training. To enable the model to distinguish di�erent sentences,

we pre�x each s ∈ S with a tag from <a> to <e>. We specify πi′ as a sequence of these,

separated from S by <sep>. NAREOR involves rearranging mention types among coreference

chains (see §9.2.2), so we use NeuralCoref [80] to detect these chains. For each, we assign a

unique uppercase tag (<X>) to replace its mentions. At the end of the input, we list each tag

and the head mention of its coreference chain in order. We then append <st> to mark the end

of the input. An illustration of the scheme follows: <a> Since I had front seat tickets, I was able to

directly see <X1>. <b> <X1> tried to reach out with <X1> <X2>. <c> I grabbed <X2> and <X1>

pulled me on stage. <d><X1> began to sing. <e> The concert had started. <sep><e><d><a><b>

<c> <X1> The music artist <X2> her hand <st>

• Reorder-1S: We use examples from trainUnsup for stage 1. It is problematic to train for the

forward direction of our task S, πi′ → S ′ since S ′ is not known. Approximating S ′ using S ′naive

would hurt output �uency. We instead train in the inverse direction S ′naive, π
−1
i′ → S, where

π−1i′ ; π−1i′ (πi′) = In is the inverse permutation of πi′ . To reduce train-test mismatch, we use the
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inverse formulation half the time, and an autoencoding one, i.e., S, In → S the other half.

• Reorder-2S: trainSup examples are used to further �netune on reorder-1S. We train in the

task direction S, πi′ → S ′.

9.3.2 Chosen Models

We choose three large, pretrained NLG models: GPT-2, BART, and T5 for our experiments.

Note that we’re aware these represent only a particular, recent subsample of the many NLG

architectures devised over the last few decades. As such, our task and its utility is not restricted

to these particular achitectures, and can be used to assess and compare the content ordering

abilities of any set of architectures. We choose these three for our experiments as a reasonable

initial choice on account of their recently noted good performance across a wide range of typical

generation tasks such as abstractive summarization and prompt-based story generation.

We �netune all using both our training methods to produce denoise-1S (d-1S), denoise-

2S (d-2S), reorder-1S (r-1S), and reorder-2S (r-2S) versions. GPT-2 [170] is a Transformer-based

language model trained on WebText. BART [105] and T5 [172] are Transformer seq2seq models.

BART is trained as a denoising autoencoder to reconstruct original from noised text. T5 is

designed to be e�ective for transfer learning. We use HuggingFace’s implementations of their

base versions.
3

9.3.3 Automatic Evaluation Metrics

Reference-Based Metrics assess the similarity between generated text and human-written

references. We use BLEU [150], METEOR [12], and BERTScore [253]. We compare generated

text with the two references per testSup example.
4

Target Order Fidelity (TOF) is de�ned as how closely the reordered text matches the given

target narrative order. e.g., given S = {s1, s2, s3}, πi′ = {3, 2, 1}, and S ′ = {s′1, s′2, s′3}, we

wish to see if s1 has correctly been translated to s′3. We introduce TOF-METEOR and TOF-

BERTScore. These assess the average METEOR and BERTScore values for each aligned pair

{si, s′i′} ∀i (where i′ refers to the target index for si). Higher values correspond to more content

preservation, where each output sentence is more likely in the correct position. Some drop is

expected in modulating for πi′ , but the overall content should be faithful. These metrics serve

3
See §9.4 for further training/�netuning details.

4
Correlates well with human evaluation as shown in §9.5.
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more as validation, where reasonable values (e.g., > 50)
5

are su�cient. Lower values indicate

more changing of the text that may be necessary for certain narrative reorderings.

9.4 Experiments

Model Finetuning and Generation

For �netuning our models, we try di�erent combinations of learning rates (LR) for both stages.

We look at either the loss (for BART and T5) or perplexity (for GPT-2) on the respective valida-

tion splits (devUnsup for 1st stage and devSup for 2nd), and choose the epoch with the lowest.

We evaluate each model on testSup, where we can directly compare results to NAREORC’s

human rewritings. We generate a single output per test example. The inputs are the original

examples to NAR-r models and the S ′naive of the examples to NAR-d models. See §9.3.1 for more

details.

We only keep the �rst �ve sentences of each output. For BART and T5, we use beam search

with a width of 5.
6

For GPT-2, we use a nucleus sampling budget [77] of 0.9 and output length

limit of 500. We try various softmax temperatures and �nd 0.9 performs best. For GPT-2, during

�netuning, it is given the concatenation of the input plus output. During generation, it is only

fed the input for which it generates a continuation (the output). We noticed that many GPT-2

generations included trailing exclamation marks, and strip these if more than four occur in a

row.
7

Human Evaluation

Annotators evaluate 100 testSup examples each from the original stories, human rewritings,

outputs from our two-stage models, and a subset of one-stage models. Each example is evalu-

ated by two annotators. See §9.12 for more.

They evaluate �uency, coherence, logic, and plot preservation (plot-pres) on 1-5 scales. Flu-

ency is a measure of how �uent and readable a text is. Coherence is how well individual sen-

tences �t together [13]. Logic is the plausibility of described events. Plot-pres is how well

reordered text preserves the plot of the original. This includes details about characters, events,

and interactions between them, encompassing its semantic and temporal aspects.

We also conduct an interestingness (interest) study on human rewritings and outputs from

5
Assuming the values are multiplied by 100.

6
Nucleus sampling did not work as well for BART and T5.

7
See §9.11 for more �netuning/generation details.
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our BART-2S and T5-2S models. Each reordered story’s interestingness w.r.t. suspense and

time �ow compared to the original are evaluated from 1-5 by two annotators. We ask the

following: “On a scale of 1-5, with 1 being most decrease in interestingness and 3 being same level

of interestingness and 5 being most increase in interestingness, how interesting is the suspense and

�ow of time in the story S, compared to the original story O? How exciting did you �nd the story

as you read through it?"

9.5 Results and Analysis

We present evaluation results of our 2S and subset of 1S models on testSup compared to human

rewritings and original stories. Tables 9.2 and 9.3 contain human evaluation results, and Table

9.4 automatic evaluation results. Correlations between automatic and human metrics are in

Table 9.5. Table 9.6 contains qualitative examples, with more in §9.13.

Method\Metric Fluency Coherence Logic Plot-pres

Original stories 4.209 4.0 3.851 N/A

Human rewritings 3.797 3.723 3.784 3.972

GPT2-d-2S 3.635 3.399 3.399 3.708

GPT2-r-2S 3.595 3.378 3.291 3.375

BART-d-1S 3.628 3.412 3.318 3.847

BART-d-2S 3.818 3.507 3.493 3.722

BART-r-2S 3.757 3.439 3.493 3.861

T5-d-2S 3.764 3.419 3.5 3.889

T5-r-1S 3.655 3.378 3.486 3.847

T5-r-2S 3.784 3.595 3.520 3.861

Table 9.2: Average human evaluation results on testSup (excluding interestingness), rated from 1-5.

Bold corresponds to best model performance per metric, and underline second-best model performance.

Method: Human BART-d BART-r T5-d T5-r

Interest 3.75 3.367 3.483 3.533 3.3

Table 9.3: Average interestingness results on testSup, rated from 1-5 (3 represents equal to original

story). Models are 2S versions. Bold corresponds to best performance, and underline second-best.

162



March 25,2022

Method\Metric BERTScore BLEU METEOR TOF-BERTScore TOF-METEOR

Human rewritings N/A N/A N/A 66.85 56.79

GPT2-d-2S 60.75 37.01 45.20 79.23 74.23

GPT2-r-2S 58.03 32.57 40.85 73.04 63.00

BART-d-1S 67.14 44.73 49.88 95.61 93.43

BART-d-2S 67.93 46.03 50.54 93.55 90.81

BART-r-2S 67.16 44.63 49.16 91.32 86.43

T5-d-2S 67.99 46.95 51.12 94.20 91.83

T5-r-1S 66.24 43.40 48.20 89.85 84.26

T5-r-2S 66.62 44.30 49.00 91.61 86.16

Table 9.4: Average automatic evaluation results on testSup (values multiplied by 100). Bold corresponds

to best performance per metric, and underline second-best (excluding the TOF metrics that are mainly

for validation).

Metric Correlation Fluency Coherence Logic Plot-pres Interest

BERTScore

Pearson 0.130 (4e-04) 0.139 (1e-04) 0.125 (0.001) 0.255 (1e-06) 0.111 (0.226)

Spearman 0.106 (0.004) 0.124 (0.001) 0.127 (0.001) 0.211 (5e-05) 0.117 (0.201)

BLEU

Pearson 0.144 (9e-05) 0.140 (1e-04) 0.113 (0.002) 0.219 (3e-05) 0.174 (0.047)

Spearman 0.130 (4e-04) 0.129 (4e-04) 0.123 (0.001) 0.179 (0.001) 0.171 (0.049)

METEOR

Pearson 0.107 (0.003) 0.125 (0.001) 0.108 (0.003) 0.203 (1e-04) 0.120 (0.191)

Spearman 0.098 (0.008) 0.114 (0.002) 0.122 (0.001) 0.164 (0.002) 0.121 (0.187)

Table 9.5: Pearson and Spearman correlations between automatic and human evaluation metrics, with

p-values in brackets. TOF metrics excluded as they are mainly for validation. Bold corresponds to highest

correlation per human evaluation metric.

9.5.1 Analysis of Human Evaluation Results

We begin by analyzing human evaluation performance through results in Tables 9.2 and 9.3.

Fluency, Coherence, Logic: Original stories score the highest for all three metrics with

human rewritings second for coherence and logic, beating the models by a noticeable degree.

BART-d-2S and T5-r-2S are generally the best-performing models here. BART-d-2S slightly

outperforms human rewritings on �uency, with T5-r-2S closely behind, demonstrating that

these models are quite �uent. These models also outdo their 1S variants. GPT-2 models perform

worst on all metrics.

Plot-pres: We see that human rewritings best preserve the plot of the original stories. T5-d-

2S is the best performing model on plot-pres, followed by BART-r-2S and T5-r-2S. GPT-2 models

perform the worst at preserving the plot of the original stories (which we show qualitatively in

§9.5.3).
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Method Text

Original

(ex. 1)

Jimmy wandered around town looking for a soda. Before he knew it, he was in a strange area. He was scared of strangers and didn’t want to

ask anyone. Soon a policeman came by and asked if he was lost. He told him that he was lost. {5,4,2,1,3}

BART-d Jimmy told a policeman that he was lost. The policeman had come by and asked if he had been lost. Before he knew it, he was in a strange

area. Jimmy had wandered around town looking for a soda. He was scared of strangers and didn’t want to ask anyone.

BART-r Jimmy told the policeman that he was lost. The policeman came by and asked if he had lost his wallet. Before Jimmy knew it, he was in a

strange area. He had wandered around town looking for a soda. He was scared of strangers and didn’t want to ask anyone.

T5-d Jimmy told a policeman that he was lost. Soon after, a policeman came by and asked if he was lost. Before he knew it, he was in a strange

area. He had wandered around town looking for a soda. He was scared of strangers and didn’t want to ask anyone.

T5-r Jimmy told a policeman that he was lost. A policeman came by and asked if he had a soda. Before he knew it, he was in a strange area. He

had wandered around town looking for a soda. He was scared of strangers and didn’t want to ask anyone.

Original

(ex. 2)

Every morning, a bird woke Fred up for work at 6 AM. Fred began to like the bird. And he enjoyed the sound of its singing. One day, the bird

no longer sang. He hoped nothing bad had happened to the bird. {4,1,3,5,2}

Human Fred didn’t hear the bird singing this morning which is unusual. The bird had been waking him up every single day at 6 AM for quite some

time. He had grown accustomed to the bird being his alarm clock. Now he’s worried that something might have happened to the poor

bird. He almost considers the bird a friend at this point.

GPT2-r One day, Fred’s bird began to sing. Every morning, Fred woke him up for work at 6 AM. This was because he liked Fred. He hoped nothing

bad had happened to Fred. This bird, however, did not like Fred.

BART-r Fred no longer sang. Every morning, he woke Fred up for work at 6 AM. He enjoyed the sound of his singing. He hoped nothing bad had

happened to him. He had begun to like the bird.

T5-d One day, the bird no longer sang. Every morning, a bird woke Fred up for work at 6 AM. He had enjoyed the sound of its singing. He had

hoped nothing bad had happened to the bird. After a while, Fred began to like the bird.

Original

(ex. 3)

Eric was walking around a pond at a local park. He saw a turtle on a rock few feet o�shore. He stepped into the water to try to catch the turtle.

Suddenly, he sank knee deep into the mud and got stuck. Someone walking on the shore ran over to rescue Eric. {5,4,1,3,2}

Human Someone who had been walking on the shore ultimately ran over and rescued Eric from the mud. Eric’s knee had sunk deep into the mud,

rendering him stuck. Earlier, Eric had been walking around a pond while at a local park. Trying to catch a turtle in the pond, Eric stepped into

the water. Eric did so because he had seen a turtle poached on a rock few feet o�shore.

BART-d Someone walking on the shore ran over to rescue Eric. Earlier, he had sunk knee deep into the mud and got stuck. Eric was walking around a

pond at a local park. He stepped into the water to try to catch the turtle. He had seen a turtle on a rock few feet o�shore.

BART-r Someone walking on the shore ran over to rescue Eric. Eric sank knee deep into the mud and got stuck. He was walking around a pond at a

local park. He had stepped into the water to try to catch the turtle. He saw the turtle few feet o�shore.

T5-r Someone walking on the shore ran over to rescue Eric. Suddenly, Eric sank knee deep into the mud and got stuck. He was walking around a

pond at a local park. He stepped into the water to try to catch the turtle. He saw the turtle few feet o�shore.

Original

(ex. 4)

Joey went to Disneyland with his family. He was so excited to meet Mickey Mouse. When he met Mickey Mouse he was so excited he couldn’t

speak! Joey �nally said hi to Mickey and it was great! Joey had a great time. {5,2,4,1,3}

GPT2-d Joey had a great time. He was so excited to meet Mickey Mouse. He had �nally said hi to Mickey and it was great! He had gone to Disneyland

with his family. When he met Mickey Mouse he was so excited he couldn’t speak

GPT2-r Joey had a great time on the roller coaster at Disneyland. He was so excited to meet Mickey Mouse he couldn’t speak! (...) He was so

excited that he went to the park with his family. He was so excited when he met Mickey Mouse and he was so excited.

BART-r Joey had a great time at Disneyland. He was so excited to meet Mickey Mouse. He �nally said hi to Mickey and it was great! He had gone to

Disneyland with his family. When he met Mickey he was excited he couldn’t speak!

T5-d Joey had a great time at Disneyland. He was so excited to meet Mickey Mouse. He had �nally said hi to Mickey and it was great! He had gone

to Disneyland with his family. When he met Mickey Mouse he was so excited he couldn’t speak!

Table 9.6: Qualitative examples for testSup. Target perms are in brackets beside original stories. d refers

to denoise, and r to reorder (2S models).

Interestingness: Human rewritings score highest on interest. Humans rewrite the text in

more creative ways, whereas BART and T5 models are more conservative (see §9.5.2 TOF and

§9.5.3). Narrative reorderings for all methods are more interesting, on average, than original

stories. NAREOR can indeed be used to generate more interesting story variations.

9.5.2 Analysis of Automatic Evaluation Results

We now analyze the automatic evaluation performance of the di�erent methods in Table 9.4.
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BERTScore, BLEU, METEOR: We see from Table 9.5 that these reference-based metrics

correlate quite well with human eval metrics, particularly plot-pres. T5-d-2S performs best fol-

lowed by BART-d-2S. Similar to the human evaluation, 2S models outperform their 1S variants,

and GPT-2 models perform worst overall. Denoise outperforms reorder variants and generate

more similar text, on avg, to human references.

Target Order Fidelity (TOF): It appears all approaches are reasonable (e.g., > 50 for TOF

metrics), and outputs are likely in the correct target orders. Human rewritings have the lowest

TOF; humans are less conservative while rewriting (shown in §9.5.3). GPT-2 models modify

text second heaviest, but perform worst overall. They introduce more errors, e.g., repeating

or hallucinating to degrade text quality and plot-pres (§9.5.3). BART and T5 models are more

conservative. It appears they have learned to perform minimal but e�ective edits (§9.5.3). They

lag behind humans and heavier editing may be required to further improve. Lastly, it appears

the reorder models modify text more heavily than their denoise variants.

9.5.3 Qualitative Analysis

From Table 9.6, we see that humans modify text heavily to suit the reorderings and are some-

times quite creative, e.g., phrasing Fred as having grown accustomed to the bird being his alarm

clock (ex. 2). Humans successfully handle necessary coreferences, tenses, time expressions

(timexes), etc.

GPT-2 modi�es text quite heavily but su�ers from incorrect coreference while introducing

spurious tokens, repetition, or hallucations. For ex. 2, GPT2-r changes the plot greatly, stating

Fred woke him up for work and This was because he liked Fred (likely due to poor coreference),

and hallucinating This bird, however, did not like Fred. For ex. 4, it repeats Joey’s excitement

many times, while hallucinating a roller coaster that was absent in the original story.

BART and T5 models are more conservative, but their edits are important and e�ective.

They handle coreference, tense, and timexes quite well. These pinpointed and critical edits

are required to maintain plot. For ex. 1, they modify He told him that he was lost to Jimmy

told a/the policeman that he was lost given that sentence is now at the beginning. BART-d

impressively modi�es tense by converting Soon a policeman came by and asked if he was lost to

The policeman had come by and asked if he had been lost. For ex. 2, T5-d converts enjoyed to

had enjoyed since the bird no longer singing is now prior information, and adds the timex After

a while to the beginning of the last output sentence. BART-r successfully changes Fred began
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to like the bird to He had begun to like the bird. For ex. 3, BART-d inserts the timex Earlier

at the beginning of the second output sentence, correctly and unambiguously conveying its

underlying temporality w.r.t. the �rst. BART-d correctly changes saw a turtle to had seen a

turtle, while BART-r does so for stepped to had stepped. For ex. 4, BART and T5 models all

resolve the Disneyland ellipsis by converting Joey had a great time to Joey had a great time at

Disneyland, while GPT2-d cannot.

However, the BART and T5 models are imperfect. For ex. 1, BART-r hallucinates lost his

wallet (original story does not involve a wallet), T5-d inserts an incorrect timex of Soon after

at the beginning of the second output sentence, and T5-r hallucinates asked if he had a soda

(this is not asked in the original story). For ex. 2, BART-r incorrectly converts the bird no

longer sang to Fred no longer sang, likely due to coreference di�culties. For ex. 3, T5-r does not

convert Suddenly to Earlier like BART-d, giving a false interpretation that Eric slipped after his

rescuer’s arrival. BART-r does not mislead with Suddenly, but is ambiguous with no timex at

all. Further, BART and T5 are more conservative than humans.

9.5.4 Overall Takeaways

Humans modify text greatly while successfully performing NAREOR. BART and T5 models

perform decently with minimal but e�ective edits. GPT-2 models tend to repeat, hallucinate,

and reduce text quality and plot preservation.

Based on human (§9.5.1) and automatic (§9.5.2) evaluation, BART-d-2S and T5-d-2S are the

best models overall. BART-d-2S outdoes its reorder variant, possibly due to BART’s pretrain-

ing as a denoising autoencoder, closer to our denoise training method. For T5, both methods

perform quite well and show potential. However, T5-d outperforms on plot-pres (Table 9.2),

interest (Table 9.3), and automatic metrics (Table 9.4). The denoise training method appears

to be slightly more e�ective, possibly because it is partially inspired by how humans perform

NAREOR (see §9.3.1). These are the �rst two task-speci�c training methods for NAREOR which

we devise ourselves, each approaching the task di�erently (see §9.3.1). 2S models also mostly

outperform 1S ones, demonstrating that second stage �netuning improves upon the �rst.

BART and T5 models are quite e�ective, excelling at �uency, but have further room for

improvement in coherence, logic, plot-pres, and interest. §9.5.3 shows they still su�er from

several issues. Their conservative tendency may limit their NAREOR ability compared to hu-

mans. Overall, these models serve as strong initial baselines for NAREOR while underscoring

the task’s di�culty and potential for exploration.
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9.6 Applications of NAREOR

Sentence ordering involves reconstructing original sentence order of an unordered sentence

set [13]. NAREORC’s reordered stories could serve as a challenge set for sentence reordering

models due to their non-linear narrative structure underrepresented in corpora. We use the

implementation of Prabhumoye et al. [165] to train i)Mext, an external model on the SIS corpus

[79], ii) Miid, an in-domain model on �rst 20% of ROCStories’ train split. We test each on i)

Control set {si}i=ni=1 , input stories from testSup, ii) Challenge set {s′i}i=ni=1 , reordered stories from

testSup. Table 9.7 shows drastic drops across metrics (higher is better - see Prabhumoye et al.

[165]) for both Mext and Miid from control to challenge set, con�rming our hypothesis.

Model TestSet SentAcc Rouge-S LCS Kendall τ

Mext
Control 76.35 48 59.1 0.57

Challenge 52.4 24.7 29.7 0.12

Miid
Control 66.4 85.3 84.8 0.75

Challenge 21.9 49.6 58 0.03

Table 9.7: Sentence ordering on control vs. challenge sets.

Systems with ability to manipulate narrative variables like order could be important for

automating pedagogical setups, especially for �ne-grained language skills such as argumenta-

tion in essay writing. As Wingate [241] explains, tutor understanding is found de�cient and

methods of feedback for students are inconsistent or vague. Language in school texts follows

a characteristic register, that often di�ers from registers students handle in everyday conver-

sation [204]. Models (e.g., NAREOR ones) that can control elements of register, e.g narrative

order, can be used to tailor such content to intended settings and bridge this gap.

Systems that can generate event timelines for clinical narratives, e.g., admission notes and

physical reports, is important for applications like medical document summarization [19, 179]

and clinical decision making [37]. Raghavan et al. [174] demonstrate that cross-narrative tem-

poral ordering of medical events is vital to generating a comprehensive timeline over a patient’s

history. Aligning multiple medical event sequences using coreference information and tempo-

ral relations has a large impact on their presentation and e�ectiveness. Our NAREOR models

may be e�ective here and improve upon existing systems.
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9.7 Related Work

There exists work on the sentence ordering task discussed in §9.6. For example, Chen et al.

[30] learn pairwise orderings of sentences using a ranking model. Unlike sentence ordering,

NAREOR involves reordering and rewriting a sequence of sentences to �t a new narrative order.

TALESPIN [131] was an early goal-based story generator. There has since been work on

related tasks like story cloze test [142, 143] and generation from prompts [46, 207]. Some works

explore controllable variants, e.g., with keywords as control [156]. NAREOR is distinct as it aims

to preserve the underlying plot while controlling a story-level aspect for an already-complete

story.

There is also narrative order visualization work. For example, Kim et al. [92] annotate story

order for movie scripts and visualize narrative order as a function of story order.

9.8 Conclusion and Future Work

We devised the macro-level controllable generation task of Narrative Reordering (NAREOR) and

introduced a dataset, NAREORC, with task-speci�c training methods and evaluation metrics,

and experimented with T5, BART, and GPT-2. Extensive evaluation and qualitative analysis

demonstrated that our models are quite e�ective but can be further improved, and that NAREOR

is challenging with potential for further exploration. We showed that NAREOR can be used to

produce more interesting story variations and can also be deployed as a challenge set for tasks

like sentence ordering.

Our work serves to address the general dearth of research on discourse-level or macro-level

controllable generation in NLG, and closes this gap by formulating NAREOR and collecting

the NAREORC benchmark. Our experiments strongly hint towards true sequence-to-sequence

pretrained generators, that have an explicit encoder, such as BART and T5 to be relatively

superior at macro-level content ordering compared to pure language model based generators

such as GPT-2.

Future directions include exploring training ideas better emulating human rewrites. NAREOR

can be explored as document-level paraphrasing for applications like data augmentation for

document tasks, adversarial sets for more temporal tasks, and applications for education and

medicine discussed in §9.6. We also hope our work drives investigation of more challenging

task variations (e.g., sub-sentential). Lastly, NAREOR’s controllability aspect can be investi-

gated further in even more challenging and diverse test settings to more exhaustively assess
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the macroplanning capabilities than we do here.

9.8.1 Broader Takeaways

This chapter exempli�es how elements of narrativity can provide a viable setting to experi-

ment with discourse-level controllable generation tasks to test the macroplanning skills of NLG

models, speci�cally, their skill at the macroplanning subtask of content ordering. Henceforth, a

promising frontier for future exploration could be framing similar macro-level control tasks and

benchmarks around other elements of narrativity such as focus (character who is depicted as

the central �gure) and narrator con�guration (�rst person vs third person, omniscient vs limited

knowledge) etc. Since all of these tasks would have plot-preservation as one of the communica-

tive subgoals, they would, as was the case with narrative reordering in this chapter, largely be

expected to hold the content constant, thus isolating out and testing model ability at aspects of

macroplanning other than content selection, and particularly, content ordering.

As an example, let us discuss a task involving another element of narrativity. Consider the

task of converting from an omniscient narrator to one where the narrator is a speci�ed charac-

ter in the story and hence only knows what the character knows. The omniscient narrator has

access to a global view of the actual story’s trajectory, both in terms of time and space. Hence

the narrator can include sentences such as “This one decision would in time dramatically alter

Odysseus’s life and lead him to lands far-�ung beyond his conception.". The limited knowl-

edge, character narrator on the other hand, only has access to a egocentric view of time and

space depending on the knowledge of the character embodied by the narrator. Naturally, if this

character itself would be some kind of omniscient being (e.g a singular God), then this would

become equivalent to an omniscient narrator. However, such characters are often non-existent

or present only upto a limited extent; typical stories do contain atleast one if not more non-

omniscient characters. Even mythological stories and sagas do contain non-omniscient char-

acters such as common citizens, heroic albeit mortal humanoid characters like humans, elves

and orcs etc. Hence, re-narrating the story when the speci�ed narrator is a non-omniscient

character is likely to require performing non-trivial changes to accomodate the constraint of

an egocentric view. For instance, since the story has to be rewitten so that events would now be

narrated from the perspective of the character chosen as narrator, their reference times would

change, requiring a corresponding change in tense.
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Appendices

9.9 Discussion: NAREOR as a Hard Instance of Control-

lable Generation

In a simple generation task, models have to learn to generate a natural language output o given

some input i. Controllable generation tasks [45, 89, 156] di�er in that models must generate o

given i and an additional “control variable" or goal g. g typically is a desired property of o not

already determined by i, such as sentiment, politeness, and so forth. NAREOR is an instance of

controllable generation at the story level, where i is the original story S, g is the target order

πi′ , and o is the reordered story S ′. NAREOR is non-trivial, due to:

1. Complex Goal, Challenging Invariant: g = πi′ can take on many distinct values (n!-

1). Typical goal variables for controllable generation are either sparse sets (e.g., keywords)

or discrete variables with few possible values (e.g., sentiment/style). Handling a many-

valued variable is harder as outputs must be varied over a larger scale with variation

in g while maintaining faithfulness to i. The invariant o/g denotes input faithfulness,

which should have the same value across outputs o even for di�erent g. For NAREOR,

o/g represents whether the output plot matches the input plot (i.e., plot-preservation).

This is di�cult to maintain as it requires a strong understanding of story event order,

characters, interactions between them, and ensuring these factors all stay consistent.

2. Extra-Sentential, Discourse Sensitive: Existing controllable generation tasks, such as

data-to-text generation with keyword goals [45], generate sentence-level outputs. NAREOR

requires generating a full story. As described in §9.2.2, performing well on NAREOR en-

tails learning several types of discourse dependencies such as ellipsis, coreferences, time

expressions, etc. Though there are multiple-sentence generation tasks, they do not usu-

ally require a model speci�cally good at discourse dependencies, nor assess these aspects

directly.

9.10 NAREORC Annotation Details

We collected NAREORC using AMT over 15 days, in a manner consistent with terms of use

of any sources and intellectual property and privacy rights of AMT crowd workers. Almost

all source content for NAREORC was based on ROCStories [142], an already publicly available
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and widely used dataset in NLP research.

We restricted annotators to be from Anglophone countries with a prior approval of > 97%.

A pool of 98 di�erent annotators participated. We manually veri�ed each submitted story,

rejecting and republishing it if found unsatisfactory. The hardness distribution was VeryEasy

(5.90%), Easy (19.03%), Moderate (38.73%), Hard (31.29%), VeryHard (5.03%). The speci�c instruc-

tions, one of the examples provided, and a snippet of the question page can be seen in Figure

9.2.

Crowd workers were fairly compensated: $1.5 per rewritten story, for a roughly 5-7 min

task. This is at least 1.5-2 times the minimum wage in the U.S.A. of $7.25 per hour ($0.725 per

6 minutes). We neither solicit, record, request, or predict any personal information pertaining

to the AMT crowd workers during the annotation process.

9.11 Further Model Finetuning and Generation Details

For GPT-2 models, we use the base version with 117M parameters. We use �netuning and

generation seeds of 42, and �netune with a batch size of two for the 1st stage and one for the

2nd stage. GPT2-d-1S reaches lowest validation perplexity (val-PPL) of 5.733 after 4 epochs,

and GPT2-d-2S reaches lowest val-PPL of 7.384 after 7 further epochs, using LRs of 5e-5 and

5e-6, respectively. GPT2-r-1S reaches lowest val-PPL of 2.576 after 4 epochs, and GPT2-r-2S

reaches lowest val-PPL of 4.486 after 5 further epochs, using an LR of 5e-6 for both.

For BART and T5, we use the base versions with 139M and 220M parameters, respectively.

We use a �netuning seed of 42, and set the minimum decoder length to one token. For the

NAR-d models, we use a batch size of 32, maximum encoder and decoder lengths of 128, and

warmup steps of 1000 and 10 for the �rst and second stages, respectively. For the NAR-r models,

we use a batch size of 16, maximum encoder and decoder lengths of 256, and warmup steps of

2000 and 20 for the �rst and second stages, respectively.

For BART-d-1S, we �nd lowest validation loss (val-loss) of 0.1573 after 7 epochs using LR of

3e-05 (≈3hrs of train-time). For BART-d-2S, we �nd lowest val-loss of 0.8828 after 17 further

epochs using LR of 1e-05 (≈30min of train-time). For BART-r-1S, we �nd lowest val-loss of

0.1177 after 6 epochs using LR of 1e-06 (≈4hrs of train-time). For BART-r-2S, we �nd lowest

val-loss of 0.8949 after 9 further epochs using LR of 1e-05 (≈20min of train-time).

For T5-d-1S, we �nd lowest val-loss of 0.1947 after 2 epochs using an LR of 1e-04 (≈1hr of

train-time). For T5-d-2S, we �nd lowest val-loss of 0.8610 after 3 further epochs using an LR of

1e-04 (≈10min of train-time). For T5-r-1S, we �nd lowest val-loss of 0.092 after 2 epochs using
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(a)

(b)

(c)

Figure 9.2: Snapshots of a) instructions seen by annotator before writing, b) one of the examples pro-

vided, and c) part of the page the annotator interacts with while rewriting.
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an LR of 5e-06 (≈1hr of train-time). For T5-r-2S, we �nd lowest val-loss of 0.8619 after 2 further

epochs using an LR of 1e-04 (≈10mins of train-time).

Training was done using single RTX 2080 Ti and Titan Xp GPUs, and Google Colab in-

stances that alternately used a single V100, P100, or Tesla T4 GPU. Hyperparameters such as

the learning rate were determined by trying a range of values (for LR, from 5e-8 to 5e-4), and

�nding ones that led to good convergence behavior (e.g., validation loss or PPL decreases at a

decently steady rate and reaches min. after a reasonable number of epochs).

(a)

(b)

Figure 9.3: Snapshots of Plot-Preservation study: a) instructions seen by annotator and b) part of the

page annotators interact with while answering the question.

9.12 Human Evaluation Study Details

The �ve human evaluation metrics were split into three AMT studies — one for Fluency, Coher-

ence, and Logic, one for Plot Preservation, and one for Interestingness. Annotators were from
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Anglophone countries with > 97% approval rate. Evaluating Interestingness and Plot-pres re-

quires more e�ort and reading two stories rather than one. To better verify whether annotators

completed Plot-pres thoughtfully, we requested them to �ll in a Reason for their Plot-pres score.

Speci�c instructions and a question snippet can be seen in Figure 9.3.

Crowd workers were fairly compensated: $0.50 per �uency, coherence, and logic evaluation,

$0.50 per Plot-pres evaluation, and $0.50 per interestingness evaluation. These are all roughly

2 minute tasks, and hence compensation is at least 1.5-2 times the minimum wage in the U.S.A.

of $7.25 per hour (or $0.25 per 2 minutes). We neither solicit, record, request, or predict any

personal information pertaining to the AMT crowd workers during the evaluation studies.

9.13 Further Qualitative Examples of Rewritten Text

See Tables 9.8 and 9.9 for further qualitative examples using various approaches for testSup

stories.
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Method Text

Original story Amy was playing Clue with her friends. She listened to the evidence. Then she reviewed her

suspects. Amy decided on her suspect. She won the game by guessing correctly. {2,5,4,3,1}

Human

rewriting

Amy listened closely to the evidence while playing Clue. It paid o� when she won the game. She

had decided carefully on her suspect. Reviewing them one by one. Her careful decision allowed

her to beat the friends she was playing with.

GPT2-d-2S Amy listened to the evidence. She won the game by guessing correctly. She had the idea that she

had chosen a suspect. Her latest research revealed a game she had played with her friends. When

it came to games, she was actually quite pleased with her choice of suspect.

GPT2-r-2S Amy listened to the evidence. She was able to win the game by guessing correctly. She decided

on her suspect. She had reviewed her suspects’ evidence. The evidence of her team was published

in a newspaper.

BART-d-2S Amy listened to the evidence. She won the game by guessing correctly. She decided on her

suspect. Then she reviewed her suspects. This was while Amy was playing Clue with her friends.

BART-r-2S Amy listened to the evidence. She won the game by guessing correctly. She decided on her

suspect. Then she reviewed her suspects. She was playing Clue with her friends.

T5-d-2S Amy listened to the evidence. She won the game by guessing correctly. She had decided on a

suspect. Then she reviewed her suspects. Amy was playing Clue with her friends.

T5-r-2S Amy listened to the evidence. She won the game by guessing correctly. She decided on her

suspect. Then she reviewed her suspects. She was playing Clue with her friends.

Original story My Dad tried to buy a car yesterday. He went to the local dealership. He had some ideas in mind.

But the dealer kept pushing other options. Dad got what he wanted, though. {5,3,2,1,4}

Human

rewriting

My Dad ultimately got what he wanted from the dealership. My dad had ideas in his mind for

buying a car. With these ideas, My Dad had gone to the local dealership. My Dad tried to purchase

a car while at the local dealership. The dealer at the dealership, however, tried pushing other

options to My Dad.

GPT2-d-2S My Dad got what he wanted for Christmas. He had some ideas in mind. He went to the local

dealership. He ended up trying to buy a car yesterday. But the dealer kept pushing other options.

BART-d-2S My Dad got what he wanted, though. He had some ideas in mind. He went to the local dealership.

He tried to buy a car yesterday. But the dealer kept pushing other options.

T5-d-2S My Dad got what he wanted, though. He had some ideas in mind. He went to the local dealership.

He had tried to buy a car yesterday. The dealer kept pushing other options.

T5-r-2S My Dad got what he wanted, though. He had some ideas in mind. He went to the local dealership.

He had tried to buy a car yesterday. But the dealer kept pushing other options.

Original story Matt saw a commercial for new shoes. And they had springy looking cushions in the sole. Matt

thought it would allow him to jump higher. So he begged his mom to get the shoes for him. Matt’s

mom eventually got him the shoes. {5,1,3,4,2}

GPT2-d-2S Matt’s mom eventually got him the shoes. Matt had seen a commercial for new shoes. Matt

thought it would allow him to jump higher. He was so proud that he begged his mom to get the

shoes for him. The shoes looked springy looking cushions in the shoes.

GPT2-r-2S Matt thought that springy cushions were great for jumping higher. He saw a commercial for new

shoes. Matt thought it would allow him to jump higher. Matt begged his mom to get the new

shoes for him. The cushions had long suede feet and had sat on the back of Matt’s hip.

BART-d-2S Matt’s mom eventually got him the shoes. Matt had seen a commercial for new shoes. He thought

it would allow him to jump higher. So he begged his mom to get the shoes for him. The shoes

had springy looking cushions in the sole.

T5-d-2S Matt’s mom eventually got him the shoes. Matt had seen a commercial for new shoes. Matt

thought it would allow him to jump higher. He begged his mom to get the shoes for him. The

shoes had springy looking cushions in the sole.

Table 9.8: Further qualitative examples for testSup. Target permutations are in brackets beside the

original stories.
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Method Text

Original story Danny bought a new shirt. He wore it to school the next day. As he was eating lunch, he spilled

mustard on it. He scrubbed it o� very hard. The mustard came out and no one was the wiser.

{5,2,4,1,3}

Human

rewriting

Danny was able to scrub all the mustard o� his shirt before anyone noticed. It was the �rst time

he had worn this shirt to school. The mustard didn’t come o� easy. The shirt was brand new.

Naturally he spilled mustard on it the very �rst time he wore it!

GPT2-d-2S The mustard came out and no one was the wiser. Danny wore his shirt to school the next day. He

scrubbed it o� very hard. Danny bought a new shirt. As he was eating lunch, he spilled mustard

on it.

GPT2-r-2S The mustard came out and no one was the wiser. Danny wore the shirt to school the next day.

He scrubbed it o� very hard. Danny bought the new shirt. As he was eating lunch, he spilled

mustard on the shirt.

BART-d-2S Danny’s mustard came out and no one was the wiser. He wore it to school the next day. He

scrubbed it o� very hard. Danny bought a new shirt. While eating lunch, he spilled mustard on

it.

BART-r-2S Danny’s shirt came out and no one was the wiser. He wore it to school the next day. He scrubbed

it o� very hard. He had bought a new shirt. As he was eating lunch, he spilled mustard on his

shirt.

T5-d-2S The mustard came out and no one was the wiser. Danny wore it to school the next day. He had

scrubbed it o� very hard. He had bought a new shirt. As he was eating lunch, he spilled mustard

on it.

T5-r-2S Danny’s mustard came out and no one was the wiser. He wore it to school the next day. He

scrubbed it o� very hard. He had bought a new shirt. As he was eating lunch, he spilled mustard

on it.

Original story Agatha loved to bake cookies. One day she put a batch in to bake. However, after twenty minutes,

there was no scent of cookies baking. She went to see what had happened. Agatha found the oven

was turned o�. {5,1,4,3,2}

GPT2-d-2S Agatha found the oven was turned o�. Agatha loved to bake cookies. She went to see what had

happened. However, after twenty minutes, there was no scent of cookies in her oven. It was one

day after she had put the batch in to bake cookies.

GPT2-r-2S Eventually, Agatha found that the oven was turned o� and turned o� in the bakery. This was a

mistake which she had made when she baked a cookie. This happened when she put a batch of

cookies in to bake. The bake out of the oven had not been turning out well. The process she had

put in the batch wasn’t �nished.

BART-d-2S Agatha found out the oven was turned o�. Agatha loved to bake cookies. She went to see what

had happened. However, after twenty minutes, there was no scent of cookies baking. This was

after she put a batch in to bake.

BART-r-2S Agatha found the oven was turned o�. Agatha loved to bake cookies. She went to see what had

happened. After twenty minutes, there was no scent of cookies baking. She had put a batch in to

bake.

T5-d-2S Agatha’s oven was turned o�. Agatha loved to bake cookies. She went to see what had happened.

However, after twenty minutes, there was no scent of cookies baking. She had put a batch in the

oven to bake.

T5-r-2S Agatha found the oven was turned o�. Agatha had always loved to bake cookies. Agatha went

to see what had happened. However, after twenty minutes, there was no scent of cookies baking.

One day Agatha put a batch in to bake.

Table 9.9: Further qualitative examples for testSup. Target permutations are in brackets beside the

original stories.
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